Rethinking Drug Discovery and Targeting After the Genomic Revolution

  • Dharmesh R. Chejara
  • Ravindra V. Badhe
  • Pradeep Kumar
  • Yahya E. Choonara
  • Lomas K. Tomar
  • Charu Tyagi
  • Viness PillayEmail author


The study of the entire genome provides for a complete and better understanding of functional relationship of different genes, genes coding for protein and other regulating sequences, as phenotypic expression is a complex interplay of these and much more. The genomic revolution, in its practically applicable form, is yet to arrive. This genomic sequence information for various organisms, including humans, is now influencing drug discovery which provides opportunity for researchers to develop new drugs/medicines. Major challenges in new drug discovery are to identify targets that are essential for the organism to survive. Several latest technologies have allowed us to understand the mechanisms of disease with respect to biological system concepts, and therefore therapeutic intervention has been developed using informative database and technologies. Therefore, with developing therapeutic interventions, it is imperative for pharmaceutical researchers to rethink about new drug discovery and targeting employing information obtained from the genomic revolution. The chapter is summarized with an outline on the brief introduction on genomic revolution followed by changing scenario in drug discovery and targeting and paradigm shift in the treatment of certain major conditions such as cancer, cardiovascular diseases and tuberculosis in postgenomic era.


Drug discovery and targeting Therapeutic interventions Pharmacogenomics Personalized medicine 


  1. 1.
    Bishop WE, Clarke DP, Travis CC (2001) The genomic revolution: what does it mean for risk assessment? Risk Anal 21(6):983–987CrossRefPubMedGoogle Scholar
  2. 2.
    Berman DM, Bosenberg MW, Orwant RL, Thurberg BL, Draetta GF, Fletcher CDM, Loda M (2012) Investigative pathology: leading the post-genomic revolution. Lab Investig 92:4–8CrossRefPubMedGoogle Scholar
  3. 3.
    Collins F (2010) Has the revolution arrived? Nature 464:674–675CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dopazo J (2014) Genomics and transcriptomics in drug discovery. Drug Discov Today 19(2):126–132CrossRefPubMedGoogle Scholar
  5. 5.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefPubMedGoogle Scholar
  6. 6.
    Reuter JA, Spacek D, Snyder MP (2015) High-throughput sequencing technologies. Molecular Cell 58(4):586–597CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Keim B (2010) 10 Years on, The genome revolution is only just beginning.
  8. 8.
  9. 9.
    Hofker MH, Wijmenga JFC (2014) The genome revolution and its role in understanding complex diseases. Biochim Biophys Acta 1842(10):1889–1895CrossRefPubMedGoogle Scholar
  10. 10.
    Parkinson T (2002) The impact of genomics on anti-infectives drug discovery and development. Trends Microbiol 10(10):S22–S26CrossRefPubMedGoogle Scholar
  11. 11.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chiang SL, Mekalanos JJ, Holden DW (1999) In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154CrossRefPubMedGoogle Scholar
  13. 13.
    Capecchi B, Serruto D, AduBobie J, Rappuoli R, Pizza M (2004) The genome revolution in vaccine research. Curr Issues Mol Biol 6:17–28PubMedGoogle Scholar
  14. 14.
    Chanda SK, Caldwell JS (2003) Fulfilling the promise: drug discovery in the post-genomic era. Drug Discov Today 8(4):168–174CrossRefPubMedGoogle Scholar
  15. 15.
    Raczniak G, Ibba M, Söll D (2001) Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use. Toxicology 160:181–189CrossRefPubMedGoogle Scholar
  16. 16.
    Murphy MP (2000) Current pharmacogenomic approaches to drug development. Pharmacogenomics 1(2):115–123CrossRefPubMedGoogle Scholar
  17. 17.
    Murphy MP (2000) Pharmacogenomics a new paradigm for drug development. Drug Discov World Fall 1:23–32Google Scholar
  18. 18.
    Katsios C, Roukos DH (2010) Individual genomes and personalized medicine: life diversity and complexity. Pers Med 7(4):347–350CrossRefGoogle Scholar
  19. 19.
    Roederer MW (2009) Cytochrome P450 enzymes and genotype-guided drug therapy. Curr Opin Mol Ther 11(6):632–640PubMedGoogle Scholar
  20. 20.
    Mok TS et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957CrossRefPubMedGoogle Scholar
  21. 21.
    Paez JG, Janne PA et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500CrossRefPubMedGoogle Scholar
  22. 22.
    O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004CrossRefPubMedGoogle Scholar
  23. 23.
    Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417CrossRefPubMedGoogle Scholar
  24. 24.
    Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580CrossRefGoogle Scholar
  25. 25.
    Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480CrossRefPubMedGoogle Scholar
  26. 26.
    DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sawyers CL (2002) Rational therapeutic intervention in cancer: kinases as drug targets. Curr Opin Genet Dev 12(1):111–115CrossRefPubMedGoogle Scholar
  28. 28.
    Singh SB, Lingham RB (2002) Current progress on farnesyl protein transferase inhibitors. Curr Opin Drug Discov Devel 5:225–244PubMedGoogle Scholar
  29. 29.
    Adjei A (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93(14):1062–1074CrossRefPubMedGoogle Scholar
  30. 30.
    Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415–433CrossRefPubMedGoogle Scholar
  31. 31.
    Ramnath N, Creaven PJ (2004) Matrix metalloproteinase inhibitors. Curr Oncol Rep 6:96–102CrossRefPubMedGoogle Scholar
  32. 32.
    Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff DJ (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. Clin Oncol 22:1430–1438CrossRefGoogle Scholar
  33. 33.
    Zonnenberg BA, Groenewegen G, Janus TJ, Leahy TW, Humerickhouse RA, Isaacson JD, Car RA, Voest E (2003) Phase I dose-escalation study of the safety and pharmacokinetics of atrasentan: an endothelin receptor antagonist for refractory prostate cancer. Clin Cancer Res 9:2965PubMedGoogle Scholar
  34. 34.
    Lee D (2003) Clinical trials of atrasentan in hormone-refractory prostate cancer. Clin Prostate Cancer 2(2):84–86CrossRefPubMedGoogle Scholar
  35. 35.
    Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(3):11–16CrossRefPubMedGoogle Scholar
  36. 36.
    Singh SK, Vobbalareddy S, Shivaramakrishna S, Krishnamaraju A, Abdul Rajjak S, Casturi SR, Akhila V, Rao YK (2004) Methanesulfonamide group at position-4 of the C-5-phenyl ring of 1,5-diarylpyrazole affords a potent class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 14:1683–1688CrossRefPubMedGoogle Scholar
  37. 37.
    Zarghi A, Arfaei S (2011) Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res 10(4):655–683PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jhaveri K et al (2012) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS- 1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res 18:5090–5098CrossRefPubMedGoogle Scholar
  39. 39.
    National Cancer Institute (2014) Clinical trials search.
  40. 40.
    Plump AS, Lum PY (2009) Genomics and cardiovascular drug development. J Am Coll Cardiol 53(13):1089–1100CrossRefPubMedGoogle Scholar
  41. 41.
    Zycher B, DiMasi JA, Milne CP, The Truth about Drug Innovation (2008) Thirty-five summary case histories on private sector contributions to pharmaceutical science. Medical progress report. Manhattan Institute, New YorkGoogle Scholar
  42. 42.
    Scriabine A (2007) Challenges for cardiovascular drug research. Cardiovasc Drug Rev 259:205–220CrossRefGoogle Scholar
  43. 43.
    Zadelaar S, Kleemann R, Verschuren L et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721CrossRefPubMedGoogle Scholar
  44. 44.
    Reardon CA, Getz GS (2001) Mouse models of atherosclerosis. Curr Opin Lipidol 12:167–173CrossRefPubMedGoogle Scholar
  45. 45.
    Ganesh SK et al (2013) Genetics and genomics for the prevention and treatment of cardiovascular disease: update a scientific statement from the American Heart Association. Circulation 24(31):1–39Google Scholar
  46. 46.
    Arnett DK, Baird AE, Barkley RA, Basson CT, Boerwinkle E, Ganesh SK, Herrington DM, Hong Y, Jaquish C, McDermott DA, O’Donnell CJ (2007) Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 115:2878–2901CrossRefPubMedGoogle Scholar
  47. 47.
    Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, Wright TM, Meyer J, Paulding CA (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42:711–714CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159:882–890CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou K et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120CrossRefPubMedGoogle Scholar
  50. 50.
    Yee SW, Chen L, Giacomini KM (2012) The role of ATM in response to metformin treatment and activation of AMPK. Nat Genet 44:359–360CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for mendelian disease gene discovery. Nat Rev Genet 12:745–755CrossRefPubMedGoogle Scholar
  53. 53.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA (2012) DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation 125:931–944CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chakravarti A, Kapoor A (2012) Genetics and genomics in cardiovascular gene discovery. In: Hill JA, Olson EN (eds) Muscle: fundamental biology and mechanism of disease. Elsevier, Waltham, pp 231–259CrossRefGoogle Scholar
  56. 56.
    Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928CrossRefPubMedGoogle Scholar
  57. 57.
    Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH (2010) Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther 9:3137–3144CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Roukos DH (2010) Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care. Expert Rev Mol Diagn 10:33–48CrossRefPubMedGoogle Scholar
  60. 60.
    Ballell L et al (2013) Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 8:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Andries K et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227CrossRefPubMedGoogle Scholar
  62. 62.
    Christophe T et al (2009) High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 5(10):e1000645CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pethe K et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160CrossRefPubMedGoogle Scholar
  64. 64.
    Abrahams KA et al (2012) Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 7:e52951CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, Einck L, Nacy CA (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974CrossRefPubMedGoogle Scholar
  66. 66.
    Tahlan K et al (2012) SQ109 targets MmpL3, a membrane transporter of trehalosemonomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wilson R et al (2013) Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol 9(8):499–506CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Willand N et al (2009) Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nat Med 15:537–544CrossRefPubMedGoogle Scholar
  69. 69.
    Bitter W et al (2009) Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5(10):e1000507CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host–pathogen interaction. Curr Opin Microbiol 12(1):4–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dharmesh R. Chejara
    • 1
  • Ravindra V. Badhe
    • 1
  • Pradeep Kumar
    • 1
  • Yahya E. Choonara
    • 1
  • Lomas K. Tomar
    • 1
  • Charu Tyagi
    • 1
  • Viness Pillay
    • 1
    Email author
  1. 1.Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations