Introduction

  • Govind Singh Saharan
  • Naresh Mehta
  • Prabhu Dayal Meena
Chapter

Abstract

Downy mildew as a disease of crucifers caused by Hyaloperonospora parasitica was reported for the first time on Capsella bursa-pastoris by Persoon (1796). The third largest group of downy mildews, which is mostly restricted to one plant family, is the brassicolous downy mildews (BDM), even though a few species of this group are parasitic to other plant families, such as Capparaceae, Resedaceae, Limnanthaceae, Cistaceae, and Zygophyllaceae. Hyaloperonospora is characterized by dichotomously branching and treelike sporangiophores, comparatively thin-walled oospores, and globose to lobate haustoria. Like Perofascia, this genus was segregated from Peronospora only after molecular phylogenetic analysis, a modern technique which could prove distinctiveness from Peronospora. The genus Hyaloperonospora is the third largest genus of downy mildews containing more than 100 species, which can infect economically important Brassicaceae crops. The downy mildew of Arabidopsis thaliana and Hyaloperonospora arabidopsidis has become a model organism to dissect plant-pathogen interactions. The downy mildew of crucifers is a widely prevalent and is a very destructive disease all over the world wherever cruciferous plant species, cultivated or wild, are found. The disease is very devastating causing yield losses in oil-yielding Brassica crops and cruciferous vegetables ranging from 50% to 100% depending upon the amount of pathogen inoculum present in the soil or near the vicinity of host, favourable environmental conditions present for infection, and development, cultural practices adopted, and disease management practices followed.

References

  1. Allen RL, Bittner-Eddy PD, Grenvitte-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host–parasite co-evolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960PubMedCrossRefGoogle Scholar
  2. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong SM, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang YC, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549–1551PubMedPubMedCentralCrossRefGoogle Scholar
  3. Belbahri L, Calmin G, Pawlowski J, Lefort F (2005) Phylogenetic analysis and real-time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol Res 109:1276–1287PubMedCrossRefGoogle Scholar
  4. Bergot M, Cloppet E, Perarnaud V, Deque M, Marçais B, Desprez-Loustau ML (2004) Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Chang Biol 10:1–14CrossRefGoogle Scholar
  5. Byford WJ (1967) Host specialization of Peronospora farinosa on Beta, Spinacia and Chenopodium. Trans Br Mycol Soc 50:603–607CrossRefGoogle Scholar
  6. Cabral A, Stassen JH, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G (2011) Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS ONE 6:e19328PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cabral A, Oome S, Sander N, Kufner I, Nurnberger T, Van den Ackerveken G (2012) Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant–Microbe Interact 25:697–708PubMedCrossRefGoogle Scholar
  8. Caillaud MC, Piquerez SJM, Fabro G, Steinbrenner J, Ishaque N, Beynon J, Jones JD (2011) Subcellular localization of the H. arabidopsidis RxLR effector repertoire identifies the extrahaustorial membrane-localized HaRxL17 that confers enhanced plant susceptibility. Plant J 69:252–265PubMedCrossRefGoogle Scholar
  9. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63PubMedCrossRefGoogle Scholar
  10. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by over-expression of an essential regulatory gene in systemic acquired resistance HUI. Proc Natl Acad Sci USA 95:6531–6536PubMedPubMedCentralCrossRefGoogle Scholar
  11. Catanzariti AM, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ (2010) The Avr M effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol Plant Microbes Interact 23:49–57CrossRefGoogle Scholar
  12. Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Pathologist 159:733–742CrossRefGoogle Scholar
  13. Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D (2000) Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated CO2. Environ Pollut 108:381–387PubMedCrossRefGoogle Scholar
  14. Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, Percy K, Hopkins A, Davis C, Karnosky DF (2008) Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 3:1–15Google Scholar
  15. Chattopadhyay C, Huda AKS (2009) Changing climate forcing alteration in cropping pattern to trigger new disease scenario in oilseeds and pulses in Indian sub-continent. In: Abstracts, National symposium on climate change, plant protection, food security interface, Kalyani, 17–19 December 2009, 70 pGoogle Scholar
  16. Chattopadhyay C, Bhattacharya BK, Kumar V, Kumar A, Meena PD (2011) Impact of climate change on pests and diseases of oilseeds brassica – the scenario unfolding in India. J Oilseed Brassica 2:48–55Google Scholar
  17. Chauhan JS, Singh KH, Singh VV, Kumar S (2010) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agril Sci 81:1093–1109Google Scholar
  18. Choi YJ, Hong SB, Shin HD (2003) Diversity of the Hyaloperonospora parasitica complex from core brassicaceous hosts based on ITS rDNA sequences. Mycol Res 107:1314–1322PubMedCrossRefGoogle Scholar
  19. Choi YJ, Hong SB, Shin HD (2005) A reconsideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol Res 109:841–848PubMedCrossRefGoogle Scholar
  20. Choi YJ, Hong SB, Shin HD (2006) Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of TSrDNA and -COX2 mt DNA sequences. Mol Phylogenet Evol 40:400–409PubMedCrossRefGoogle Scholar
  21. Choi YJ, Constantinescu O, Shin HD (2007a) A new downy mildew of the Rosaceae: Peronospora oblongispora sp. Nov. (Chromista, Peronosporales). Nova Hedwigia 85:93–101CrossRefGoogle Scholar
  22. Choi YJ, Hong SB, Shin HD (2007b) Extreme size and sequence variation in the ITS rDNA of Bremia lactucae. Mycopathol 163:91–95CrossRefGoogle Scholar
  23. Choi YJ, Hong SB, Shin HD (2007c) Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol Res 110:381–391CrossRefGoogle Scholar
  24. Choi YJ, Hong SB, Shin HD, Thines M (2007d) Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris worldwide. Fungal Divers 27:11–34Google Scholar
  25. Choi YJ, Denchev CM, Shin HD (2008) Morphological and molecular analyses support the existence of host-specific Peronospora species infecting Chenopodium. Mycopathologia 165:155–164PubMedCrossRefGoogle Scholar
  26. Choi YJ, Shin HD, Thines M (2009) Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol Res 113:1340–1350PubMedCrossRefGoogle Scholar
  27. Choi YJ, Danielsen S, Lübeck M, Hong SB, Delhey R, Shin HD (2010) Morphological and molecular characterization of the causal agent of downy mildew on Quinoa (Chenopodium quinoa). Mycopathologia 169:403–412PubMedCrossRefGoogle Scholar
  28. Choi YJ, Klosterman SJ, Kummer V, Voglmayr H, Shin HD, Thines M (2015) Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of Beet and Spinach. Mol Phylogenet Evol 86:24–34PubMedPubMedCentralCrossRefGoogle Scholar
  29. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37:399–426CrossRefGoogle Scholar
  30. Coates ME, Beynon JL (2010) Hyaloperonospora arabidopsidis as a pathogen model. Ann Rev Phytopathol 48:329–345CrossRefGoogle Scholar
  31. Collier SM, Hamel LP, Moffett P (2011) Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR Protein. Mol Plant Microbe Interact 24:918–931PubMedCrossRefGoogle Scholar
  32. Constantinescu O (1989) Peronospora complex on compositae. Sydowia 41:79–107Google Scholar
  33. Constantinescu O (1991) An annotated list of Peronospora names. Thunbergia 15:1–110Google Scholar
  34. Constantinescu O, Fatehi J (2002) Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 74:291–338CrossRefGoogle Scholar
  35. Cunnington JH (2006) DNA sequence variation supports multiple host specialised taxa in the Peronospora viciae complex (Chromista: Peronosporales). Nova Hedwigia 82:23–29CrossRefGoogle Scholar
  36. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedCrossRefGoogle Scholar
  37. Dangl JL, Holub EB, Debener T, Lehnackers H, Ritter C, Crute IR (1992) Genetic definition of loci involved in Arabidopsis-pathogen interaction. In: Koncz C, Chua NH, Schell J (eds) Methods in Arabidopsis research. World Scientific Press, Singapore, pp 393–418CrossRefGoogle Scholar
  38. de Bary A (1863) Recherches sur le developpement de quelques champignons parasites. Annales des Sciences Naturelles Botanique Ser 4:5–148Google Scholar
  39. Dickinson CH, Greenhalgh JR (1977) Host range and taxonomy of Peronospora on crucifers. Trans Br Mycol Soc 69:111–116CrossRefGoogle Scholar
  40. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548PubMedCrossRefGoogle Scholar
  41. Fabro G, Steinbrenner J, Coates M, Ishaque N, Baxter L, Studholme DJ, Korner E, Allen RL, Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud MC, Sohn KH, Van den Ackerveken G, Parker JE, Beynon J, Jones JDG (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7:e1002348PubMedPubMedCentralCrossRefGoogle Scholar
  42. Garcia-Blazquez G, Goker M, Voglmayr H, Martin MP, Telleria MT, Oberwinkler F (2008) Phylogeny of Peronospora, parasitic on Fabaceae, based on ITS sequences. Mycol Res 112:502–512PubMedCrossRefGoogle Scholar
  43. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Ann Rev Phytopathol 44:489–509CrossRefGoogle Scholar
  44. Gaumann E (1918) Uber die Formen der Peronospora parasitica Ein Beitrag Zur Spezies frage bei parasitischen Pilzen. Beih Bot Zentralblatt 35:395–533Google Scholar
  45. Gaumann E (1923) Contributions toward a monograph of the genus Peronospora corda. Beitrage zur kryptogamenflora de schweiz 5:360Google Scholar
  46. Goker M, Voglmayr H, Riethmuller A, Weiß M, Oberwinkler F (2003) Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 81:672–683CrossRefGoogle Scholar
  47. Goker M, Riethmuller A, Voglmayr H, Weiß M, Oberwinkler F (2004) Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Progr 3:83–94CrossRefGoogle Scholar
  48. Goker M, Voglmayr H, Riethmüller A, Oberwinkler F (2007) How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet Bio 44:105–122CrossRefGoogle Scholar
  49. Goker M, Voglmayr H, Blazquez GG, Oberwinkler F (2009a) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113:308–325PubMedCrossRefGoogle Scholar
  50. Goker M, Garcia-Blazquez G, Voglmayr H, Telleria MT, Martin MP (2009b) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE 4:e6319PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gustavsson A (1959) Studies on nordic peronosporas. I. Taxonomic revision. Opera Bot 3:1–271Google Scholar
  52. Hibberd JM, Whitbread R, Farrar JF (1996) Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol Mol Plant Pathol 48:37–53CrossRefGoogle Scholar
  53. Hiura M, Kanegae H (1934) Studies on the downy mildews of cruciferous vegetables in Japan. Trans Sapporo Nat His Soc 13:125–133Google Scholar
  54. Holub EB (2008) Natural history of Arabidopsis thaliana and oomycete symbioses. Eur J Plant Pathol 122:91–109CrossRefGoogle Scholar
  55. Holub EB, Beynon JL, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant Microbe Interact 7:223–239CrossRefGoogle Scholar
  56. Huda AKS, Spooner-Hart R, Murray G, HindLanoiselet T, Ramakrishna YS, Desai S, Thakur RP, Chattopadhyay C, Jagannathan R, Khan SA, Rathore LS (2005) Climate related agricultural decision making with particular reference to plant protection. J Mycol Pl Pathol 35:513Google Scholar
  57. IPCC (2007) Fourth assessment report (AR4): of the United Nations intergovernmental panel on climate change. Downloaded from http://www.ipcc.ch on 27 December 2011 at 2216 hrs IST
  58. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  59. Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Shahid Mukhtar M, Tomé DFA, Tör M, Ackerveken GVD, Mcdowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJG, Petre B, Ristaino J, Yoshida K, Birch PRJ, Govers F (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434PubMedCrossRefGoogle Scholar
  60. Kenneth RG (1981) Downy mildews of graminaceous crops. In: Spencer DM (ed) The downy mildews. Academic, London/New York/San Francisco, pp 367–394Google Scholar
  61. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the fungi, 9th edn. CAB International, WallingfordGoogle Scholar
  62. Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445PubMedPubMedCentralCrossRefGoogle Scholar
  63. Koike ST (1998) Downy mildew of arugula, caused by Peronospora parasitica, in California. Plant Dis 82:1063CrossRefGoogle Scholar
  64. Kolte SJ (1985) Diseases of annual edible oilseed crops Vol II. Rapeseed-mustard and sesame diseases. CRC Press, Boca Raton. 135 pGoogle Scholar
  65. Kumar A, Banga SS, Meena PD, Kumar PR (2015) Brassica oilseeds breeding and management. CABI International, Wallingford. 280 pCrossRefGoogle Scholar
  66. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369PubMedCrossRefGoogle Scholar
  67. Landa BB, Montes-Borrego M, Munoz-Ledesma FJ, Jimenez-Dıaz RM (2007) Phylogenetic analysis of downy mildew pathogens of opium poppy and PCR-based in planta and seed detection of Peronospora arborescens. Phytopathology 97:1380–1390PubMedCrossRefGoogle Scholar
  68. Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554PubMedCrossRefGoogle Scholar
  69. Lebeda A, Syrovatko P (1988) Specificity of Bremia lactucae isolates from Lactuca sativa and some Asteraceae plants. Acta Phytopathol Entomopathol Hungarica 23:39–48Google Scholar
  70. Li Y, Huang F, Lu Y, Shi Y, Zhang M, Fan J, Wang W (2013) Mechanism of plant –microbe interaction and its utilization in disease – resistance breeding for modern agriculture. Physio Mol Plant Pathol 83:51–58CrossRefGoogle Scholar
  71. Lucas JA, Sherriff C (1988) Pathogenesis and host specificity in downy mildew fungi. In: Singh RS, Singh US, Hess WM, Weber DJ (eds) Experimental and conceptual plant pathology. Oxford & IBH Publishers Company Private Limited, New Delhi. 479 pGoogle Scholar
  72. Manning W, Tiedemann A (1995) Climate change: Effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245PubMedCrossRefGoogle Scholar
  73. Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006) Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. Samsun NN and to increased resistance against infection with potato virus Y. Plant Cell Environ 29:126–137PubMedCrossRefGoogle Scholar
  74. McDowell JM (2011) Genomes of obligate plant pathogens reveal adaptations for obligate parasitism. Proc Natl Acad Sci USA 108:8921–8922PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meena PD, Awasthi RP, Chattopadhyay C, Kolte SJ, Kumar A (2010) Alternaria blight: a chronic disease in rapeseed-mustard. J Oilseed Brassica 1:1–11Google Scholar
  76. Meena PD, Rani A, Meena R, Sharma P, Gupta R, Chowdappa P (2012) Aggressiveness, diversity and distribution Alternaria brassicae isolates infecting oilseed Brassica in India. Afr J Microbiol Res 6:5249–5258Google Scholar
  77. Mitchell CE, Reich PB, Tilman D, Groth JV (2003) Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Glob Chang Biol 9:438–451CrossRefGoogle Scholar
  78. Mukhtar MS, Nishimura MT, Dangl J (2009) NPR1 in plant defense: it’s not over ‘til It’s turned over. Cell 137:804–806PubMedCrossRefGoogle Scholar
  79. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y, Consortium EUE, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, Dangl JL (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nagarajan S, Muralidharan K (1995) Dynamics of plant diseases. Allied Publications Ltd, New Delhi. 247 pGoogle Scholar
  81. NSW Department of Primary Industries (2007) Editor’s note: science alert. 02 March 2007 http://www.sciencealert.com.au/news/20070203-13999.html
  82. Pangga IB, Chakraborty S, Yates D (2004) Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2. Phytopathol 94:221–227CrossRefGoogle Scholar
  83. Persoon CH (1796) Observations mycologicae sur descriptions tan novorum quam notibilium fungorum exhibitae. Part 1: 115pGoogle Scholar
  84. Plessl M, Heller W, Payer HD, Elstner EF, Habermeyer J, Heiser I (2005) Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biol 7:694–705PubMedCrossRefGoogle Scholar
  85. Rehmany AP, Gordon A, Rose LE, Allen AE, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR, Beynon JL (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–1850PubMedPubMedCentralCrossRefGoogle Scholar
  86. Riethmuller A, Voglmayr H, Goker M, Weiß M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849PubMedCrossRefGoogle Scholar
  87. Runge F, Choi YJ, Thines M (2011) Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur J Plant Pathol 129:135–146CrossRefGoogle Scholar
  88. Saharan GS (1984) A review of research on rapeseed mustard pathology in India. Annual Workshop AICORPO ICAR, Jaipur, 6–10 August 1984Google Scholar
  89. Saharan GS (1992) Management of rapeseed and mustard diseases. In: Kumar D, Rai M (eds) Advances in oilseeds research, vol 1., Chapt. 7. Scientific Publications, Jodhpur, pp 152–188Google Scholar
  90. Saharan GS, Verma PR, Nashaat NI (1997) Monograph on downy mildew of crucifers. Technical Bulletin 1997–01, Saskatoon Research Centre, 197 pGoogle Scholar
  91. Saharan GS, Naresh M, Sangwan MS (2005) Diseases of oilseed crops. Indus Publication Co., New Delhi, p 643Google Scholar
  92. Scott JB, Hay FS, Wilson CR (2004) Phylogenetic analysis of the downy mildew pathogen of oilseed poppy in Tasmania, and its detection by PCR. Mycol Res 108:98–295CrossRefGoogle Scholar
  93. Sherriff C, Lucas JA (1990) The host range of isolates of downy mildew, Peronospora parasitica, from Brassica crop species. Plant Pathol 39:77–91CrossRefGoogle Scholar
  94. Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4:159–170PubMedCrossRefGoogle Scholar
  95. Spring O, Bachofer M, Thines M, Riethmuller A, Goker M, Oberwinkler F (2006) Intraspecific relationship of Plasmopara halstedii isolates differing in pathogenicity and geographic origin based on ITS sequence data. Eur J Plant Pathol 114:309–315CrossRefGoogle Scholar
  96. Subba Rao AVM, Agarwal PK, Huda AKS, Chattopadhyay C (2007) Using info crop – a user friendly crop simulation model for mustard. In: Climate and Crop Disease Risk Management – an International Initiative in Asia Pacific Region. CRIDA, Hyderabad. 16 pGoogle Scholar
  97. Swaminathan MS (1986) Changing paradigms in Indian agriculture – the way ahead. The Hindu, pp 22–46Google Scholar
  98. Thines M, Choi YJ (2016) Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathol 106:6–18CrossRefGoogle Scholar
  99. Thines M, Spring O (2005) A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon 92:443–458Google Scholar
  100. Thines M, Telle S, Ploch S, Runge M (2009) Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol Res 113:532–540PubMedCrossRefGoogle Scholar
  101. U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452Google Scholar
  102. USDA (United States Department of Agriculture) (2015) Oilseeds: world markets and trade. Foreign Agricultural Service, Office of Global Analysis, February 2015Google Scholar
  103. Voglmayr H (2003) Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142PubMedCrossRefGoogle Scholar
  104. Voglmayr H, Fatehi J, Constantinescu O (2006) Revision of Plasmopara (Chromista, Peronosporales on Geranium). Mycol Res 110:633–645PubMedCrossRefGoogle Scholar
  105. Voglmayr H, Choi YJ, Shin HD (2014a) Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine. Mycol Prog 13:131–144PubMedCrossRefGoogle Scholar
  106. Voglmayr H, Montes-Borrego M, Landa BB (2014b) Disentangling Peronospora on Papaver: phylogenetics, taxonomy, nomenclature and host range of downy mildew of opium poppy (Papaver somniferum) and related species. PLoS One 9:e96838PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang WM, Devoto A, Turner JG, Xiao SY (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 20:966–976PubMedCrossRefGoogle Scholar
  108. Wang J, Lee C, Replogle A, Joshi S, Korkin D, Hussey R, Baum TJ, Davis EL, Wang X, Mitchum MG (2010) Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol 187:1003–1017PubMedCrossRefGoogle Scholar
  109. Waterhouse GM (1973) Peronosporales. In: Ainsworth GC, Sparrow FK, Sussman A (eds) The Fungi 4B. Academic, London, pp 165–185Google Scholar
  110. Waugh MM, Kim DH, Ferrin DM, Stanghellini ME (2003) Reproductive potential of Monosporascus cannonballus. Plant Dis 87:45–50CrossRefGoogle Scholar
  111. Williams PH (1985) Crucifer genetics co-operative resource book. Downy mildew. University of Wisconsin, Madison, pp D5–D7Google Scholar
  112. Xiao S (2012) Protecting our crops from pathogens: novel approaches to an old problem. Gene Technol 1:e103. https://doi.org/10.4172/2329-6682.1000e103 Google Scholar
  113. Xiao S, Wang W, Yang X (2008) Evolution of resistance genes in plants. In: Heine H (ed) Innate immunity of plants, animals, and humans. Springer, Berlin, pp 1–25Google Scholar
  114. Yerkes WD, Shaw CG (1959) Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology 49:499–507Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Naresh Mehta
    • 1
  • Prabhu Dayal Meena
    • 2
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.ICAR-Directorate of Rapeseed Mustard ResearchBharatpurIndia

Personalised recommendations