Skip to main content

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Bioremediation technology is an effective and eco-friendly technology for removing toxic pollutants from the soil and aquatic environment. The lesser quantities of some heavy metals are important to humans and animals. However, the extensive usage of heavy metals for human purposes can change the geochemical cycles and biochemical balance. Due to this reason, the excess amount of toxic heavy metals like copper, lead, cadmium, nickel, and chromium is directly discharged into the soil and water bodies. The indiscriminate accumulation of heavy metals can be hazardous to the human life and aquatic biota. To overcome this problem, bioremediation technique has been developed for the treatment of heavy metals using biological agents like bacteria, fungi, algae, and plants. These biological agents can be used to change the metal bioavailability and toxicity in the soil and aqueous environment. The remediation of heavy metals in soil is further improved by the addition of organic amendments like biosolid, compost, and municipal solid waste, which is used as both nutrients and conditioner. Aim of this chapter is to investigate the role of microorganisms and plants to remediate the heavy metals and also to discuss the recent bioremediation technologies and methods for heavy metals in soil and aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by sporosarcinaginsengisoli. J Hazar Mater 201–202:178–184

    Article  Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley

    Google Scholar 

  • Banik S, Das KC, Islam MS, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng 2:1035

    Google Scholar 

  • Bsoul AA, Zeatoun L, Abdelhay A, Chiha M (2014) Adsorption of copper ions from water by different types of natural seed materials. Desalin Water Treat 52:5876–5882

    Article  Google Scholar 

  • Catherine L, Olivier P (2012) Gold nanoparticles for physics, chemistry and biology. World Scientific. ISBN 9781848168077

    Google Scholar 

  • Chekroun KB, Baghour (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4:873–880

    Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708

    Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Cohen MD, Kargacin B, Klein CB, Costa M (1993) Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol 23:255–281

    Article  CAS  Google Scholar 

  • Dierks S (2005) Gold MSDS, electronic space products international

    Google Scholar 

  • Dixit R, Wassiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2012) Biosorption of Pb(II) by nonliving lichen biomass of Cladonia rangiformishoffm. Int J Environ Res 6(2):417–424

    CAS  Google Scholar 

  • El-Sayed MT (2012) The use of Saccharomyces cerevisiae for removing cadmium(II) from aqueous waste solutions. Afr J Microbiol Res 6(41):6900–6910

    CAS  Google Scholar 

  • Fingerman M, Nagabhushanam R (2005) Bioremediation of aquatic and terrestrial ecosystem, Science Publishers Inc.

    Google Scholar 

  • Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier Publication, Netherlands, pp 158–228

    Chapter  Google Scholar 

  • Fowler BA, Nordberg GF, Silver (1986). In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals. Amsterdam, Elsevier, pp 521–531

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts of on heavy metal soil bioremediation (Review). Eur J Miner Process Environ Prot 1:58–66

    Google Scholar 

  • Gonzalez I, Aguila E, Galan E (2007) Partitioning, bioavailability and origin of heavy metals from the Nado Laggoon sediments (Morocco) as a basis for their management. Environ Geol 52:1581–1593

    Article  CAS  Google Scholar 

  • Goyer R (1991) Toxic effects of metals. In: Amdur MO, Doull JD, Klaassen CD (eds) Casarett and Doull’s Toxicology, 4th edn. Pergamon Press, Newyork, pp 623–630

    Google Scholar 

  • Grady CPL, Daigger GT, Lim HC (1998) Biological wastewater treatment, 2nd edn. CRC Press. ISBN 0-8247-8919-9

    Google Scholar 

  • Halder S (2014) Bioremediation of heavy metals through fresh microalgae: a review. Scholars Acad J Biosci 2(11):825–830

    Google Scholar 

  • Hardisty PE, Ozdemiroglu E (2005) The economics of groundwater remediation and protecttion. CRC Press

    Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, et al (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Env Contam Toxicol 33–39

    Google Scholar 

  • Hogan CM (2010) Heavy metal. In: Monosson E, Cleveland C (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington, DC

    Google Scholar 

  • Howard JR (1989) Fluidized bed technology: principles and applications. Adam Higler, New York, NY

    Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288. https://doi.org/10.1007/s11157-010-9215-6

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139. https://doi.org/10.1021/es203753b

    Article  CAS  Google Scholar 

  • Kensa VM (2011) Bioremediation—an overview. J Ind Pollut Contr 27(161):168

    Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water, IOSR. J Environ Sci Toxicol Food Technol 1(44):50

    Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Biores Tech 102:5297–5304

    Google Scholar 

  • Maiti RK, Pinero JLH, Oreja JAG, Santiago DL (2003) Plant based bioremediation and mechanisms of heavy metal tolerance of plants: a review. Pro Indian natn Sci Acad B70(1):1–12

    Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Merchuk JC (2003) Airlift bioreactors: review of the recent advances. Can J Chem Eng 81:324–337

    Article  CAS  Google Scholar 

  • Pirkle JL, Kaufmann RB, Brody DJ, Hickman T, Gunter EW, Paschal DC (1998) Exposure of the U.S. population to lead: 1991–1994. Environ Health Perspect 106:745–750

    Article  CAS  Google Scholar 

  • Prasad and Freitas (1999) Removal of toxic metalsfrom solution by leaf, stem and root phytomass of Quercus Ilex L. (Holly Oak). J Environ Pollut 110:277–283

    Article  Google Scholar 

  • Rehm HJ, Reed G, Puhler A. et al (2000) Environmental processes II—soil decontamination. Wiley—WCH

    Google Scholar 

  • Rike AG, Schiewer S, Filler DM (2008) Bioremediation of petroleum hydrocarbons in cold regions. In: Filler DM, Snape I, Barnes DL (eds.), Cambridge University Press

    Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkns M, Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  Google Scholar 

  • Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    Article  CAS  Google Scholar 

  • Seaborg GT (1968) Uranium. In: The Encyclopedia of Chemical Elements. Skokie, Illinois:Reinhold book corporation, pp 773–786. LCCCN 68-29938

    Google Scholar 

  • Sriprang R Murooka Y (2007) Accumulation and detoxification of metals by plants and microbes. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, Heidelberg, pp 7–100. https://doi.org/10.1007%2F978-3-540-34793-4

    Google Scholar 

  • Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactiveeffects in humans. Environ Int 69:148–158

    Article  CAS  Google Scholar 

  • Suthersan SS (1999) Remediation engineering design concepts, CRC Press Lewis Publishers

    Google Scholar 

  • Talley JW (2005) Bioremediation of recalcitrant compounds. In: Talley J (ed), Taylor & Francis

    Google Scholar 

  • Tastan BE, Ertug ̆rul S, Do ̈nmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876

    Google Scholar 

  • Techounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2014) Heavy metal metals toxicity and the environment. PMC. https://doi.org/10.1007/978-3-7643-8340-4_6

    Google Scholar 

  • Thiele DJ (1995) Metal detoxification in eukaryotic cell, Crisp. Data Base of National Institute of Health, Washington D.C

    Google Scholar 

  • Viggi CC, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res 44(1):151–158

    Article  Google Scholar 

  • Volesky B (1990) Biosorption of metal recovery. Trends Biotechnol 5:96–101

    Article  Google Scholar 

  • Vullo DL, Ceretti HM, Hughes EA, Ramyrez S, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonasveronii 2E. Bioresour Technol 99:5574–5581

    Article  CAS  Google Scholar 

  • Wilson DN (1988) Association Cadmium. In: Cadmium—market trends and influences. Cadmium 87 Proceedings of the 6th International Cadmium Conference. London, pp 9–16

    Google Scholar 

  • Yuan-gang Zu, Xia-hua ZHAO, Mao-sheng HU, Yuan REN, Peng XIAO, Lei ZHU, Zhang Yao (2006) Biosorption effects of copper ions on Candida utilis under negative pressure cavitation. J Environ Sci 18(6):1254–1259

    Article  Google Scholar 

  • Zhang R, Xu X, Chen W et al (2015) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-015-7099-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senthil Kumar, P., Gunasundari, E. (2018). Bioremediation of Heavy Metals. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_9

Download citation

Publish with us

Policies and ethics