Skip to main content

Abstract

Scarcity of pure water is a threatening issue worldwide; water is an essential need for human survival and all activities on earth. Effluent water from industries containing recalcitrant pollutants causes dangerous impacts to the environment and human health. In the current epoch, bioremediation is an alternative technology for decontamination of water systems by use of specific microorganisms and it can provide green, efficient, cost-effective, and sustainable remediation of water contaminants. Immobilized nanofibers possess enhanced catalytic activity, high stability, and very good reusability of novel nano-biocomposites which has remarkable potential for the treatment of water and wastewater. It also plays a major role in safe preservation of bioremediating bacteria for potential wastewater treatment applications. Nanofibers have become a popular carrier matrix for immobilization of specific microorganisms. Simple, versatile, and cost-effective properties of nanofibers made them a promising tool for microbial integration which enhances the bioremediation by efficient removal of contaminants such as dyes and heavy metals from wastewater. This chapter describes the immobilization of specific bacteria on electrospinning nanofibers and its application in bioremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abigail MEA, Das N (2012) Microbial degradation of atrazine, commonly used herbicide. Int J Adv Biol Res 2(1):16–23

    Google Scholar 

  • Agarwal S, Greiner A, Wendorff JH (2009) Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Funct Mater 19(18):2863–2879

    Article  CAS  Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2). https://doi.org/10.4172/2161-1009.1000178

  • Anjum M, Miandad R, Waqas M et al (2016) Remediation of wastewater using various nano-materials. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Bayat Z, Hassanshahian M, Cappell S (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J 9:48–54

    CAS  Google Scholar 

  • Bharat Kumar SK, Lakshmanarao P, Anjaneyulu V et al (2012) Nanofibers in pharmaceuticals—a review. Am J Pharm Tech Res 2(6) ISSN: 2249–3387

    Google Scholar 

  • Botes M, Eugene Cloete T (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Article  CAS  Google Scholar 

  • Cai Z, Sun Y, Liu W et al (2017) An overview of nanomaterials applied for removing dyes from wastewater. Environ Sci Pollut Res Int 1–23. https://doi.org/10.1007/S11356-017-9003-8

  • Das M, Adholeya A (2015) Potential Uses of immobilized bacteria, fungi, algae, and their aggregates for treatment of organic and inorganic pollutants in wastewater. In: Water challenges and solutions on a global scale. ACS, pp 319–337

    Google Scholar 

  • Eroglu E, Agarwal V, Bradshaw M et al (2012) Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 14(10):2682–2685

    Article  CAS  Google Scholar 

  • Ferroudj N, Nzimoto J, Davidson A et al (2013) Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl Catal B 136:9–18

    Article  Google Scholar 

  • Gensheimer M, Becker M, Brandis-Heep A et al (2007) Novel biohybrid materials by electrospinning: nanofibers of poly (ethylene oxide) and living bacteria. Adv Mater 19(18):2480–2482

    Article  CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F et al (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482

    Article  CAS  Google Scholar 

  • Homaeigohar S, Elbahri M (2014) Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7(2):1017–1045

    Article  CAS  Google Scholar 

  • Huang Y, Ma H, Wang S (2012) Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl Mater Interfaces 4(6):3054–3061

    Article  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  • Kenry, Chwee TL (2017) Nanofiber technology: current status and emerging developments. https://doi.org/10.1016/j.progpolymsci.2017.03.002

  • Klein S, Kuhn J, Avrahami R (2009) Encapsulation of bacterial cells in electrospun microtubes. Biomacromol 10(7):1751–1756

    Article  CAS  Google Scholar 

  • Klein S, Avrahami R, Zussman E et al (2012) Encapsulation of pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. J Ind Microbiol Biotechnol 39(11):1605–1613

    Article  CAS  Google Scholar 

  • Kumar SR, Gopinath P (2016) Chapter 2 nano-bioremediation applications of nanotechnology for bioremediation. Remediation of heavy metals in the environment. CRC Press, pp 27–48

    Google Scholar 

  • Lee SW, Belcher AM (2004) Virus-based fabrication of micro-and nanofibers using electrospinning. Nano Lett 4(3):387–390

    Article  CAS  Google Scholar 

  • Letnik I, Avrahami R, Rokem JS (2015) Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromol 16(10):3322–3328

    Article  CAS  Google Scholar 

  • Lim CT (2017) Beyond the current state of the syntheses and applications of nanofiber technology. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2017.03.002

  • Liu Y, Rafailovich, MH, Malal R et al (2009) Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. ‎Proc Natl Acad Sci 106(34):14201–14206

    Google Scholar 

  • Lopez-Rubio A, Sanchez E, Sanz Y et al (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromol 10(10):2823–2829

    Article  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M et al (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng. https://doi.org/10.1155/2016/4964828

  • Malwal D, Gopinath P (2016) Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit Rev Environ Sci Technol 46(5):500–534

    Article  Google Scholar 

  • Martins SCS, Martins CM, Fiúza LMCG et al (2013) Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotechnol 12(28):4412–4418

    Article  CAS  Google Scholar 

  • Mohamed A, El-Sayed R, Osman TA et al (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25

    Article  CAS  Google Scholar 

  • OyaaSan N (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4(61):32249–32255

    Article  Google Scholar 

  • Pal DB, Singh P, Mishra PK (2017) Composite ceria nanofiber with different copper loading using electrospinning method. J Alloy Compd 694:10–16

    Article  CAS  Google Scholar 

  • Pang Y, Zeng GM, Tang L et al (2011) Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102(22):10733–10736

    Article  CAS  Google Scholar 

  • Panthi G, Park M, Kim HY et al (2015) Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J Ind Eng Chem 24:1–13

    Article  CAS  Google Scholar 

  • Plakas KV, Karabelas AJ (2012) Removal of pesticides from water by NF and RO membranes—a review. Desalination 287:255–265

    Article  CAS  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  • Rawat M, Rawat AP, Giri K et al (2013) Cr (VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies. Environ Sci Pollut Res 20(8):5198–5211

    Article  CAS  Google Scholar 

  • Rizwan M, Singh M, Mitra CK et al (2014) Ecofriendly application of nanomaterials: nanobioremediation. ‎J Nanopart Res. https://doi.org/10.1155/2014/431787

  • Salalha W, Kuhn J, Dror Y et al (2006) Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 17(18):4675–4681

    Article  CAS  Google Scholar 

  • San Keskin NO, Celebioglu A, Sarioglu OF et al (2015a) Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 5(106):86867–86874

    Article  CAS  Google Scholar 

  • San Keskin NO, Celebioglu A, Uyar T et al (2015b) Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. ‎Ind Eng Chem Res 54(21):5802–5809

    Google Scholar 

  • Sarioglu OF, Yasa O, Celebioglu A et al (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15(9):2566–2572

    Article  CAS  Google Scholar 

  • Sarioglu OF, Celebioglu A, Tekinay T et al (2015) Evaluation of contact time and fiber morphology on bacterial immobilization for development of novel surfactant degrading nanofibrous webs. RSC Adv 5(124):102750–102758

    Article  CAS  Google Scholar 

  • Sarioglu OF, Celebioglu A, Tekinay T et al (2016) Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water. Int J Environ Sci Technol 13(8):2057–2066

    Article  CAS  Google Scholar 

  • Sarioglu OF, Celebioglu A, Tekinay T et al (2017a) Evaluation of fiber diameter and morphology differences for electrospun fibers on bacterial immobilization and bioremediation performance. Int Biodeterior Biodegrad 120:66–70

    Article  CAS  Google Scholar 

  • Sarioglu OF, San Keskin NO, Celebioglu A et al (2017b) Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf B Biointerface 152:245–251

    Article  CAS  Google Scholar 

  • Seow TW, Lim CK, Anif MNM (2016) Review on wastewater treatment technologies, IJAES 11(1):111–126 ISSN 0973-6077

    Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy J et al (2008) Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water Air Soil Pollut 8(3):257–266

    Article  CAS  Google Scholar 

  • Suja PS, Reshmi CR, Sagitha P et al (2017) Electrospun nanofibrous membranes for water purification. Polym Rev 57(3):467–504

    Article  CAS  Google Scholar 

  • Tan KB, Vakili M, Horri BA et al (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242

    Article  CAS  Google Scholar 

  • Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221

    Article  CAS  Google Scholar 

  • Tong HW, Mutlu BR, Wackett LP et al (2014) Manufacturing of bioreactive nanofibers for bioremediation. Biotechnol Bioeng 111(8):1483–1493

    Article  CAS  Google Scholar 

  • Vancov T, Jury K, Rice N, Van Zwieten L et al (2007) Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. J Appl Microbiol 102(1):212–220

    Article  CAS  Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1(1):15

    Article  CAS  Google Scholar 

  • Xie S, Tai S, Song H et al (2016) Genetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. J Mater Chem B 4(42):6820–6829

    Article  CAS  Google Scholar 

  • Zahabi SR, Ravandi SAH et al (2016) Removal of nickel and cadmium heavy metals using nanofiber membranes functionalized with (3-mercaptopropyl) trimethoxysilane (TMPTMS). J Water Health 14(4):630–639

    Article  Google Scholar 

  • Zussman E (2011) Encapsulation of cells within electrospun fibers. Polym Adv Technol 22(3):366–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Matheswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aiswarya Devi, S., Harshiny, M., Matheswaran, M. (2018). Role of Nanofibers in Bioremediation. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_6

Download citation

Publish with us

Policies and ethics