Skip to main content

Integration of Lignin Removal from Black Liquor and Biotransformation Process

  • Chapter
  • First Online:
  • 1813 Accesses

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Industrial discharge has tremendously increased inorganic pollutants in water bodies all over the world. Paper and pulp mill effluent is included in one of the most pollution-generating discharges containing complex chemical compounds such as lignin. For clean and healthy water resources, the recovery of lignin from wastewater from the paper and pulp industry is of high importance. On the other hand, these pollutants can be carcinogenic, due to the chlorine lignin and chlorine phenols that are formed along the process. The main focus of this study on precipitation of lignin from the black liquor (influent) is one stage followed by dewatering/washing to improve purity of lignin. Lignin valorization is an essential process for an advanced, sustainable, and economical biomass-based industry. However, converting lignin into value-added products remains a challenge due to its heterogeneity and irregular structure. Complex nature of lignin depolymerized by aromatic-catabolizing organisms to create “biological funnels” that receive heterogeneous aromatic substrates and convert them to a few products. Microbes such as bacteria and fungi are involved in the lignin degradation. Degradation of lignin through white-rot fungi may be helpful for the biotechnical applications like biopulping, biobleaching and pulp mill effluents treatment, and soil bioremediation. White-rot fungi specifically P. chrysosporium, also known as model fungus, and Coriolus versicolor are potential degradation against recalcitrant chromophoric material in bleach plant effluents. The abundance and renewability of lignin potentially converted to valuable bioproduct may eventually replace existing technology on manufacturing industries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Rahim WM, Zaki EA (2005) Functional and molecular characterization of native Egyptian fungi capable of removing textile dyes. Arab J Biotech 8:189–200

    Google Scholar 

  • Adhi TP, Korus RA, Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomycetes in agitated submerged culture. Appl Environ Microbiol 55:1165–1168

    CAS  Google Scholar 

  • Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solidstate fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol 11:511–517

    Article  CAS  Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. Adv Biochem Eng Biotechnol 57:159–195

    CAS  Google Scholar 

  • Ander P, Eriksson KE (1977) Selective degradation of wood components by white-rot fungi. Physiol Plant 41:239–248

    Article  CAS  Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115

    Google Scholar 

  • Blanchette RA (1995) Degradation of lignocellulose complex in wood. Can J Bot 73:S999–S1010

    Article  CAS  Google Scholar 

  • Carvajal JC, Gómez Á, Cardona CA (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour Technol 214:468–476

    Article  CAS  Google Scholar 

  • Chandra R, Abhishek A, Sankhwar M (2011) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 102:6429–6436

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34:991–999

    CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chung H, Washburn NR (2016) Extraction and types of lignin. Lignin in polymer composites. Copyright © 2016 Elsevier Inc, pp 13–25

    Google Scholar 

  • Dahlmann G, Schroeter MC (1990) The Organocell process: pulping with the environment in mind. Tappi J 73:237–240

    CAS  Google Scholar 

  • Daniel G, Nilsson T (1998) Developments in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, p 326

    Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  • Duff SJ, Murray WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • El Mansouri NE, Salvado J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crops Prod 26:116–124

    Article  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Germany

    Book  Google Scholar 

  • Feng C, Catherine EB (2017) Producing jet fuel from biomass lignin: potential pathways to alkylbenzenes and cycloalkanes. Renew Sustain Energy Rev 72:673–722

    Article  Google Scholar 

  • Gao J, Tang LG (1996) Cellulose science. Science Press, Beijing

    Google Scholar 

  • Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • He ZW, Yang J, Lu QF, Lin Q (2013) Effect of structure on the electrochemical performance of nitrogen- and oxygen-containing carbon micro/nanospheres prepared from lignin-based composites. ACS Sustain Chem Eng 1:334–340

    Article  CAS  Google Scholar 

  • Iyovo GD, Du G, Chen J (2010) Sustainable bioenergy bioprocessing: biomethane production, digestate as biofertilizer and as supplemental feed in algae cultivation to promote algae biofuel commercialization. J Microb Biochem Technol 2:100–106

    Article  CAS  Google Scholar 

  • Jiang TD (2001) Lignin. Chemical Industry Press, Beijing

    Google Scholar 

  • Jin L, Sellers T, Schutz TP, Nicholas NN (1990) Utilization of lignin modified by brown-rot fungi. Holzforschung 44:132–138

    Article  Google Scholar 

  • Jinhuo D, Antonio FP, Kei S (2016) Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 57:4945–4951

    Article  Google Scholar 

  • Joffres B, Lorentz C, Vidalie M, Laurenti D, Quoineaud AA, Charon N, Daudin A, Quignard A, Geantet C (2014) Catalytic hydro conversion of a wheat straw soda lignin: characterization of the products and the lignin residue. Appl Catal B 145:167–176

    Google Scholar 

  • Kalogo Y, Habibi S, MacLean HL, Joshi SV (2007) Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol 41:35–41

    Article  CAS  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BL1 by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technol 99:4635–4641

    Article  CAS  Google Scholar 

  • Kamble SV, Bhattacharyulu YC (2015) Selective separation of biomass from black liquor waste by inorganic and organic acids. Int J Adv Res 3:684–692

    Google Scholar 

  • Kang SM, Li XL, Fan J, Chang J (2011) Classified separation of lignin hydrothermal liquefied products. Ind Eng Chem Res 50:11288–11296

    Article  CAS  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    CAS  Google Scholar 

  • Kirk K, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white rot fungi. In: Young RA, Akhtar M (eds) Environmental friendly technologies for pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: The MICROBIAL degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kosbar LL, Gelorme J, Japp RM, Fotorny WT (2001) Introducing biobased materials into the electronics industry. J Ind Ecol 4:93–98

    Article  Google Scholar 

  • Kouisni L, Holt-Hindle P, Maki K, Paleologou M (2012) The Lignoforce system: a new process for the production of high quality lignin from black liquor. J Sci Technol For Prod 2:6–10

    Google Scholar 

  • Lamar RT, Dietrich DM (1992) Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. J Ind Microbiol 9:181–191

    Article  CAS  Google Scholar 

  • Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin—recent routes. Eur Polym J 49:1151–1173

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-meditated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  • Licsko I (1993) Dissolved organics removal by solid-liquid phase separation (adsorption and coagulation). Water Sci Technol 27:245–248

    Article  CAS  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  • Loutfi H, Blackwell B, Uloth V (1991) Lignin recovery from Kraft black liquor: preliminary process design. Tappi 74:203–210

    CAS  Google Scholar 

  • Martínez AT, Camarero S, Guillén F, Gutiérrez A, Munoz C, Varela E (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13:265–274

    Article  Google Scholar 

  • Messner K, Srebotnik E (1994) Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev 13:351–362

    Article  CAS  Google Scholar 

  • Murugesan K (2003) Bioremediation of paper and pulp mill effluents. Indian J Exp Biol 441:1239–1248

    Google Scholar 

  • Nawaz A, Ahmed Z, Shahbaz A, Khan Z, Javed M (2014) Coagulation–flocculation for lignin removal from wastewater—a review. Water Sci Technol 69:1589–1597

    Article  CAS  Google Scholar 

  • Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416

    Article  CAS  Google Scholar 

  • Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A (2007) Biodegradation of kraft-lignin by Bacillus sp. Isolated from sludge of pulp and paper mill. Biodegradation 18:783–792

    Article  CAS  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    CAS  Google Scholar 

  • Ramosa WDlS, Poznyaka T, Chairezb I, Córdova RI (2009) Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. J Hazard Mater 169:428–434

    Google Scholar 

  • Ramsay JA, Nguyen T (2002) Decoloration of textile dyes by Trametes versicolor and its effect on dye toxicity. Biotech Lett 24:1757–1761

    Article  CAS  Google Scholar 

  • Ravi S, Lovjeet S, Prasenjit M, Shri C (2013) Removal of lignin from wastewater through electro coagulation. World J Environ Eng 1:16–20

    Google Scholar 

  • Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck K, Cohen Hubal EA, Paunov VN, Stoyanov SD, Velev OD (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nanotechnology 10:817–823

    CAS  Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    Article  CAS  Google Scholar 

  • Saake B, Lehnen R (2000) Lignin. Ullmanns encyclopedia of industrial chemistry. Wiley. KGaA

    Google Scholar 

  • Sharma R, Chandra S, Singh A, Singh K (2014) Degradation of pulp and paper mill effluents. IIOAB J 5:6–12

    CAS  Google Scholar 

  • Simionescu CI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Vasile C, Stoleriu A, Ioanid A (1993) Lignin/epoxy composites. Compos Sci Technol 48:317–323

    Article  CAS  Google Scholar 

  • Singhal A, Thakur IS (2009) Decolourization and detoxification of pulp and paper mill effluent by Emericella nidulans var. nidulans. J Hazard Mater 171:619–625

    Article  CAS  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic Press, San Diego

    Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207

    Article  CAS  Google Scholar 

  • Tiku DK, Kumar A, Chaturvedi R, Makhijani SD, Manoharan A, Kumar R (2010) Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int Biodeterior Biodegrad 64:173–183

    Article  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Biores Technol 72:169–183

    Article  CAS  Google Scholar 

  • Tyagi S, Kumar V, Singh J, Teotia P, Bisht S, Sharma S (2014) Bioremediation of pulp and paper mill effluent by dominant aboriginal microbes and their consortium. Int J Environ Res 8:561–568

    CAS  Google Scholar 

  • Ugurlu M, Gurses A, Dogarc C, Yalcın M (2008) The removal of lignin and phenol from paper mill effluents by electrocoagulation. J Environ Manage 87:420–428

    Article  CAS  Google Scholar 

  • VicuTaa R (1988) Bacterial degradation of lignin. Enzyme Microb Technol 10:645–655

    Google Scholar 

  • Vijay Kumar T, Manju Kumari T (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromolec 72:834–847

    Article  Google Scholar 

  • Vijay Kumar T, Manju Kumari T, Prasanth R, Michael RK (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  Google Scholar 

  • Vishtal AG, Kraslawski A (2011) Challenges in Industrial applications of technical lignins. BioResources 6:3547–3568

    Google Scholar 

  • Wang HJ, Zhao Y, Wang C, Fu Y, Guo QX (2009) Theoretical study on the pyrolysis process of lignin dimer model compounds. Acta Chim Sinica 67:893–900

    CAS  Google Scholar 

  • Wang Y, Dai L, Fan L, Shan S, Liu Y, Ruan R (2016) Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrol

    Google Scholar 

  • Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  • Zimmermann W, Broda P (1989) Utilization of lignocellulose from barley straw by actinomycetes. Appl Microbiol Biotechnol 30:103–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamurthi Tamilarasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamilarasan, K., Sellamuthu, P.S., Gurunathan, B. (2018). Integration of Lignin Removal from Black Liquor and Biotransformation Process. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_5

Download citation

Publish with us

Policies and ethics