Skip to main content

Phenol Degradation from Industrial Wastewater by Engineered Microbes

  • Chapter
  • First Online:
Book cover Bioremediation: Applications for Environmental Protection and Management

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Over the centuries, a tremendous increase in human population has placed a demand for industrial growth, which enhanced the disposal of wastewater and resulted in developing a sustainable technology for wastewater treatment. Phenol and its derivatives are the most pondered substantial pollutants generated from pharmaceutical industries, basic organic chemical manufacturing industries, petroleum refineries, petrochemical industries, coal gasification operations, liquefaction process, tannery, pesticide manufacturing industries, and pulp and paper mills, which contain harmful pollutants that are toxic and carcinogenic in nature. Accumulation of phenol even at a lower concentration may be fatal to all living beings in the ecosystem. This chapter includes the overview of phenol pollution, deleterious effects of phenol in the ecosystem, biodegradation of phenols, and significance of engineered microbes for phenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  Google Scholar 

  • Abdel-Satar AM, Ali MH, Goher ME (2017) Indices of water quality and metal pollution of Nile River, Egypt. Egypt J Aquat Res 43(1):21–29

    Article  Google Scholar 

  • Agarry SE, Solomon BO (2008) Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol 5(2):223–232

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2014) Medical management guidelines for phenol. https://www.atsdr.cdc.gov/mmg/mmg.asp?id=144&tid=27

  • Ahmad SA, Shamaan NA, Syed MA, Khalid A, Ab Rahman NA, Khalil KA, Dahalan FA, Shukor MY (2016) Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rendiconti Lincei 1–9

    Google Scholar 

  • Au DW, Yurchenko OV, Reunov AA (2003) Sublethal effects of phenol on spermatogenesis in sea urchins (Anthocidaris crassispina). Environ Res 93(1):92–98

    Article  CAS  Google Scholar 

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23(1):S32–S44

    Article  CAS  Google Scholar 

  • Banerjee A, Ghoshal AK (2010) Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Biores Technol 101(14):5501–5507

    Article  CAS  Google Scholar 

  • Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R, Choi MM, Zaray G (2010) Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci Total Environ 408(5):1043–1049

    Article  CAS  Google Scholar 

  • Dickinson PA, Taylor G (1996) Pulmonary first-pass and steady-state metabolism of phenols. Pharm Res 13(5):744–748

    Article  CAS  Google Scholar 

  • Dico CL, Caplan YH, Levine B, Smyth DF, Smialek JE (1989) Phenol: tissue distribution in a fatality. J Forensic Sci 34(4):1013–1015

    Article  Google Scholar 

  • dos Santos VL, de Souza Monteiro A, Braga DT, Santoro MM (2009) Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. J Hazard Mater 161(2):1413–1420

    Article  Google Scholar 

  • Duan W, Meng F, Lin Y, Wang G (2017) Toxicological effects of phenol on four marine microalgae. Environ Toxicol Pharmacol 52:170–176

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation. Curr Opin Microbiol 8(3):268–275

    Article  Google Scholar 

  • El Nemr A, Moneer AA, Ragab S, El Sikaily A (2016) Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast. Egypt J Aquat Res 42(2):121–131

    Article  Google Scholar 

  • Enguita FJ, Leitão AL (2013) Hydroquinone: environmental pollution, toxicity, and microbial answers. BioMed Res Int 2013

    Google Scholar 

  • Environmental Health Criteria 161: Phenol, US Environmental Protection Agency, Cincinnati, OH (1992)

    Google Scholar 

  • Falsig H, Gross A, Kongsted J, Osted A, Sloth M, Mikkelsen KV, Christiansen O (2006) Uptake of phenol on aerosol particles. J Phys Chem A 110(2):660–670

    Article  CAS  Google Scholar 

  • Fennewald M, Prevatt W, Meyer R, Shapiro J (1978) Isolation of Inc P-2 plasmid DNA from Pseudomonas aeruginosa. Plasmid 1(2):164–173

    Article  CAS  Google Scholar 

  • Fialova A, Boschke E, Bley T (2004) Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int Biodeterior Biodegradation 54(1):69–76

    Article  CAS  Google Scholar 

  • Günther K, Schlosser D, Fritsche W (1995) Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. J Basic Microbiol 35(2):83–92

    Article  Google Scholar 

  • Hammam AM, Zaki MS, Yousef RA, Fawzi O (2015) Toxicity, mutagenicity and carcinogenicity of phenols and phenolic compounds on human and living organisms [A review]. Adv Environ Biol 9(8):38–49

    CAS  Google Scholar 

  • Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol Lett 43(2):133–137

    Article  CAS  Google Scholar 

  • Hino S, Watanabe K, Takahashi N (1998) Phenol hydroxylase cloned from strain E2 exhibits novel kinetic properties. Microbiology 144(7):1765–1772

    Article  CAS  Google Scholar 

  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F (1992) Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol 37(2):252–259

    Article  CAS  Google Scholar 

  • Ho CT (1992) Phenolic compounds in food. ACS Symp Ser 506:2–7

    Article  CAS  Google Scholar 

  • Ho SL, Hollinrake K (1989) Acute epiglottitis and Chloraseptic. BMJ: Brit Med J 298(6687):1584

    Article  CAS  Google Scholar 

  • Jack DB (1997) One hundred years of aspirin. Lancet 350(9075):437

    Article  CAS  Google Scholar 

  • Jain P, Dutta A, Sood J (2006) Coeliac plexus blockade and neurolysis: an overview. Indian J Anaesth 50(3):169–177

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of Science. InTech, Rijeka, pp 289–320

    Google Scholar 

  • Kato K, Kozaki S, Imamura T, Sakuranaga M (2000) U.S. patent No. 6,096,530. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Keith L, Telliard W (1979) ES&T special report: priority pollutants: I—A perspective view. Environ Sci Technol 13(4):416–423

    Article  Google Scholar 

  • Kim IC, Oriel PJ (1995) Characterization of the Bacillus stearothermophilus BR219 phenol hydroxylase gene. Appl Environ Microbiol 61(4):1252–1256

    CAS  Google Scholar 

  • Kivisaar M, Ho R, Kasak L, Heinaru A, Habicht J (1990) Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24(1):25–36

    Article  CAS  Google Scholar 

  • Kotresha D, Vidyasagar GM (2012) Degradation of phenol by novel strain Pseudomonas aeruginosa MTCC 4997 isolated from petrochemical industrial effluent. Int J Microbial Resource Technol 1–8

    Google Scholar 

  • Kramer PE, Robbins ML, Smith PK (1955) Phenolic compounds as chemotherapeutic agents against poliomyelitis virus in tissue culture. J Pharmacol Exp Ther 113(3):262–271

    CAS  Google Scholar 

  • Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13(1):76–87

    Article  CAS  Google Scholar 

  • Kukor JJ, Olsen RH (1990) Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c. J Bacteriol 172(8):4624–4630

    Article  CAS  Google Scholar 

  • Kumar A, Kumar S, Kumar S (2005) Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J 22(2):151–159

    Article  CAS  Google Scholar 

  • Lajtner J, Erben R, Klobučar GIV (1996) Histopathological effects of phenol on the digestive gland of Amphimelania holandri Fér. (Gastropoda, Prosobranchia). Bull Environ Contam Toxicol 57(3):458–464

    Article  CAS  Google Scholar 

  • Lakshmi MC, Sridevi V (2015) A review on biodegradation of phenol from industrial effluents. J Ind Pollut Control 25(1):1–15

    Google Scholar 

  • Lau SC, Qian PY (2000) Inhibitory effect of phenolic compounds and marine bacteria on larval settlement of the barnacle Balanus amphitrite amphitrite Darwin. Biofouling 16(1):47–58

    Article  CAS  Google Scholar 

  • Law AT, Yeo ME (1997) Toxicity of phenol on Macrobrachium rosenbergii (de Man) eggs, larvae, and post-larvae. Bull Environ Contam Toxicol 58(3):469–474

    Article  CAS  Google Scholar 

  • Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S (2016) Biodegradation of phenol by bacteria strain Acinetobacter Calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health 13(3):300

    Article  Google Scholar 

  • Mahiudddin M, Fakhruddin ANM (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol 2012

    Google Scholar 

  • Makhija DT, Somani RR, Chavan AV (2013) Synthesis and pharmacological evaluation of anti-inflammatory mutual amide prodrugs. Indian J Pharm Sci 75(3):353

    Article  CAS  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols—sources and toxicity. Polish J Environ Stud 16(3):347–362

    Google Scholar 

  • Min K, Freeman C, Kang H, Choi SU (2015) The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. Biomed Res Int 2015:1–11

    Google Scholar 

  • Mrozik AGNIESZKA, Swędzioł ŻANETA, Miga SEWERYN (2015) Comparative study of phenol degradation with a wild-type and genetically modified P. vesicularis (pBR322). plasmid stability and fame profiling. Environ Prot Eng 41(1)

    Google Scholar 

  • Mrozik A, Miga S, Piotrowska Seget Z (2011) Enhancement of phenol degradation by soil bioaugmentation with Pseudomonas sp. JS150. J Appl Microbiol 111(6):1357–1370

    Article  CAS  Google Scholar 

  • Mulawa PA, Cadle SH (1981) Measurement of phenols in automobile exhaust. Anal Lett 14(9):671–687

    Article  CAS  Google Scholar 

  • Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ (2004) Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Appl Environ Microbiol 70(4):1907–1912

    Article  CAS  Google Scholar 

  • Nickheslat A, Amin MM, Izanloo H, Fatehizadeh A, Mousavi SM (2013) Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide. J Environ Public Health 1–9

    Google Scholar 

  • Nordlund INGRID, Powlowski JUSTIN, Shingler VICTORIA (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172(12):6826–6833

    Article  CAS  Google Scholar 

  • Paisio CE, Quevedo MR, Talano MA, González PS, Agostini E (2014) Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation. Environ Technol 35(14):1802–1810

    Article  CAS  Google Scholar 

  • Paisio CE, Talano MA, González PS, Pajuelo-Domínguez E, Agostini E (2013) Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation. Environ Technol 34(4):485–493

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotech Lett 24(24):2047–2051

    Article  CAS  Google Scholar 

  • Pope CN (2006) Central nervous system effects and neurotoxicity. In: Toxicol of organophosphate and carbamate compounds, pp 271–291

    Google Scholar 

  • Qixing Z, Limei D (1995) Joint effects of chromium and phenol on marine prawns (Penaeus japonicus). Mar Pollut Bull 31(4–12):387–389

    Article  Google Scholar 

  • Saha NC, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63(2):195–202

    Article  CAS  Google Scholar 

  • Salgueiro-González N, Concha-Graña E, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2012) Determination of alkylphenols and bisphenol A in seawater samples by dispersive liquid–liquid microextraction and liquid chromatography tandem mass spectrometry for compliance with environmental quality standards (Directive 2008/105/EC). J Chromatogr A 1223:1–8

    Article  Google Scholar 

  • Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential. Process Biochem 39(8):1001–1006

    Article  CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273

    CAS  Google Scholar 

  • Shabana AM (2013) Prevention of propofol injection pain, using lidocaine in a large volume does it make a difference. A prospective randomized controlled double blinded study. Egypt J Anaesth 29(4):291–294

    Article  Google Scholar 

  • Si BC, Li JM, Zhu ZB, Zhang YH, Lu JW, Shen RX, Zhang C, Xing XH, Liu Z (2016) Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Biotechnol Biofuels 9(1):254

    Article  Google Scholar 

  • Sihem A, Lehocine MB (2012) Batch adsorption of phenol from industrial waste water using cereal by-products as a new adsrbent. Energy Proc 18:1135–1144

    Article  Google Scholar 

  • Silanikove N, Leitner G, Merin U, Prosser CG (2010) Recent advances in exploiting goat’s milk: quality, safety and production aspects. Small Ruminant Res 89(2):110–124

    Article  Google Scholar 

  • Siripattanakul-Ratpukdi S (2014) Phenolic based pharmaceutical contaminated wastewater treatment kinetics by activated sludge process. J Clean Energy Technol 2(2):150–153

    Article  CAS  Google Scholar 

  • Spain JC, Nishino SF (1987) Degradation of 1, 4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53(5):1010–1019

    CAS  Google Scholar 

  • Spangberg L, Engström B, Langeland K (1973) Biologic effects of dental materials: 3. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surg Oral Medi Oral Pathol 36(6):856–871

    Article  CAS  Google Scholar 

  • Supriya C, Neehar D (2014) Biodegradation of phenol by Aspergillus niger. (International Organization of Scientific Research) J Pharm 4(7):11–17

    Google Scholar 

  • Swinehart JM (1999) U.S. patent no. 5,961,997. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17(5):1021–1026

    Article  CAS  Google Scholar 

  • Timourian H, Felton JS, Stuermer DH, Healy S, Berry P, Tompkins M, Battaglia G, Hatch FT, Thompson LH, Carrano AV, Minkler J (1982) Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments. J Toxicol Environ Health Part A 9(5–6):975–994

    Article  CAS  Google Scholar 

  • Tripathi BM, Kumari P, Weber KP, Saxena AK, Arora DK, Kaushik R (2014) Influence of long term irrigation with pulp and paper mill effluent on the bacterial community structure and catabolic function in soil. Indian J Microbiol 54(1):65–73

    Article  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26(3):145–164

    Article  CAS  Google Scholar 

  • Wan N, Gu JD, Yan Y (2007) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int Biodeterior Biodegradation 59(2):90–96

    Article  CAS  Google Scholar 

  • Wang B, Shui Y, Ren H, He M (2017) Research of combined adsorption-coagulation process in treating petroleum refinery effluent. Environ Technol 38(4):456–466

    Article  CAS  Google Scholar 

  • Wasilkowski D, Swędzioł Ż, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediation of contaminated environments. CHEMIK nauka-technika-rynek 1(66):817–826

    Google Scholar 

  • Wozniak CA, McClung G, Gagliardi J, Segal M, Matthews K (2012) Regulation of genetically engineered microorganisms under FIFRA, FFDCA and TSCA. In: Regulation of agricultural biotechnology: The United States and Canada. Springer Netherlands, pp 57–94

    Google Scholar 

  • Zakoshansky VM (2007) The cumene process for phenol-acetone production. Pet Chem 47(4):273–284

    Article  Google Scholar 

  • Zídková L, Szőköl J, Rucká L, Pátek M, Nešvera J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int Biodeterior Biodegradation 84:179–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Nakkeeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathna, R., Nakkeeran, E. (2018). Phenol Degradation from Industrial Wastewater by Engineered Microbes. In: Varjani, S., Agarwal, A., Gnansounou, E., Gurunathan, B. (eds) Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7485-1_13

Download citation

Publish with us

Policies and ethics