Skip to main content

Numerical Modeling of Aerosol Transport and Dynamics

  • Chapter
  • First Online:
Book cover Energy for Propulsion

Abstract

Flow and aerosol transport and dynamics in a reaction chamber, part of an aerosol generation system, is analyzed by coupling Computational Fluid Dynamics (CFD) and Aerosol Dynamic Equation. A predictable parametric aerosol output from reaction chamber is desirable for different contexts. The effect of residence time of the aerosol particles and mixing characteristics of the flow on the aerosol size distribution is analyzed using the ANSWER finite volume CFD code. The ANSWER uses the steady state turbulent flow field to solve the General Dynamics Equations (GDE) for the aerosol particles. The GDE includes mechanisms such as coagulation, gravitational settling and thermophoretic drift etc. A volume (and mass) preserving nodal method is implemented to model particle distribution changes due to coagulation. The modules modeling coagulation and gravitational settling were validated with respect to analytical solutions taken from the literature. The size distribution in reaction chamber design is seen to be robust for various flow scenarios at inlet number concentration of 1 × 1012/m3. This is explained by flow time scale being much smaller than coagulation time scale. At higher inlet concentration of 1 × 1015/m3 the average size distribution and outlet size distribution are significantly shifted from the inlet distribution, due to the much lower coagulation time scale. A noticeable difference between no or low swirl and high swirl flow is seen. A secondary ring inlet within the reaction chamber was seen to lead to identical aerosol distribution for different flow scenarios even at higher inlet concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACRi, ANSWER® and CFDStudio® “KEYWORD COMMANDS”, VERSION 6.43.0 (2016)

    Google Scholar 

  2. T.K. Agarwal, B.K. Sahoo, J.J. Gaware, M. Joshi, B.K. Sapra, CFD based simulation of thoron (220 Rn) concentration in a delay chamber for mitigation application. J. Environ. Radioact. 136, 16–21 (2014)

    Article  Google Scholar 

  3. S. Anand, Y.S. Mayya, Coagulation in a diffusing Gaussian aerosol puff: Comparison of analytical approximations with numerical solutions. J. Aerosol Sci. 40(4), 348–361 (2009)

    Article  Google Scholar 

  4. N. Chauhan, R.P. Chauhan, M. Joshi, T.K. Agarwal, P. Aggarwal, B.K. Sahoo, Study of indoor radon distribution using measurements and CFD modeling. J. Environ. Radioact. 136, 105–111 (2014)

    Article  Google Scholar 

  5. E.R. Cohen, E.U. Vaughan, Approximate solution of the equations for aerosol agglomeration. J. Colloid Interface Sci. 35(4), 612–623 (1971)

    Article  Google Scholar 

  6. Cunningham, E., On the velocity of steady fall of spherical particles through fluid medium, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 83, no. 563, pp. 357–365 (1910)

    Article  Google Scholar 

  7. CFD Online, Turbulence Intensity (2016), https://www.cfd-online.com/Wiki/Turbulence_intensity. Accessed 1 Oct 2016

  8. C.N. Davies (ed.), Aerosol science (Vol. 1102) (Academic Press, London, 1966)

    Google Scholar 

  9. Friedlander, S.K.1., Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. (Oxford University Press, New York, 2000)

    Google Scholar 

  10. N.A. Fuchs, The Mechanics of Aerosols 1964 (Pagamon, New York, 1964)

    Google Scholar 

  11. F. Gelbard, Y. Tambour, J.H. Seinfeld, Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76(2), 541–556 (1980)

    Article  Google Scholar 

  12. Gimbun, J., Chuah, T. G., Fakhru’l-Razi, A., and Choong, T.S., The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chem. Eng. Process. Process Intensif. 44(1), 7–12 (2005)

    Google Scholar 

  13. A. Guha, Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311–341 (2008)

    Article  MathSciNet  Google Scholar 

  14. W.D. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. J. Aerosol Sci. 27(2), 281–304 (1996)

    Article  Google Scholar 

  15. Jacobson, M.Z., Fundamentals of Atmospheric Modeling (Cambridge university press, 2005)

    Google Scholar 

  16. K.W. Lee, J. Chen, J.A. Gieseke, Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime. Aerosol Sci. Technol. 3(1), 53–62 (1984)

    Article  Google Scholar 

  17. K.E. Lehtinen, M.R. Zachariah, Self-preserving theory for the volume distribution of particles undergoing Brownian coagulation. J. Colloid Interface Sci. 242(2), 314–318 (2001)

    Article  Google Scholar 

  18. P.W. Longest, M. Hindle, S.D. Choudhuri, P.R. Byron, Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci. Technol. 41(10), 952–973 (2007)

    Article  Google Scholar 

  19. R. McGraw, Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27(2), 255–265 (1997)

    Article  Google Scholar 

  20. K.J. Overholt, J.E. Floyd, O.A. Ezekoye, Computational modeling and validation of aerosol deposition in ventilation ducts. Fire Technol. 52(1), 149–166 (2016)

    Article  Google Scholar 

  21. E. Otto, H. Fissan, S.H. Park, K.W. Lee, The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: part II—analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30(1), 17–34 (1999)

    Article  Google Scholar 

  22. Patankar, S., Numerical Heat Transfer and Fluid Flow (CRC press, 1980)

    Google Scholar 

  23. J. Pich, Theory of gravitational deposition of particles from laminar flows in channels. J. Aerosol Sci. 3(5), 351–361 (1972)

    Article  Google Scholar 

  24. A. Prakash, A.P. Bapat, M.R. Zachariah, A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci. Technol. 37(11), 892–898 (2003)

    Article  Google Scholar 

  25. J. Pyykönen, J. Jokiniemi, Computational fluid dynamics based sectional aerosol modelling schemes. J. Aerosol Sci. 31, 531–550 (2000)

    Article  Google Scholar 

  26. A.K. Runchal, CONDIF: A modified central-difference scheme for convective flows. Int. J. Numer. Meth. Eng. 24(8), 1593–1608 (1987)

    Article  Google Scholar 

  27. Seinfeld, J.H., Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2016)

    Google Scholar 

  28. Versteeg, H.K., Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, 2007)

    Google Scholar 

  29. S. Vinchurkar, P.W. Longest, J. Peart, CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. J. Aerosol Sci. 40(9), 807–822 (2009)

    Article  Google Scholar 

  30. M.M.R. Williams, Nuclear aerosol behavior during reactor accidents. Prog. Nucl. Energy 23(2), 101–108 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Rajagopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajagopal, P.S. et al. (2018). Numerical Modeling of Aerosol Transport and Dynamics. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics