Skip to main content

Analysis of Electrolyte-Insulator-Semiconductor Tunnel Field-Effect Transistor as pH Sensor

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 711))

Included in the following conference series:

  • 1473 Accesses

Abstract

In this paper, an analysis of Silicon on Insulator (SOI) Electrolyte Insulator Semiconductor (EIS) Tunnel Field Effect Transistor (TFET) has been investigated for pH sensing application using 3-D device simulator “Sentaurus”. The electrolyte region has been considered an intrinsic semiconductor material in which the electron and hole charges represent the mobile ions in the aqueous solution. The dielectric constant, energy bandgap and electron affinity of electrolyte region are 78, 1.5 eV and 1.32 eV respectively. The effect of pH has been examined on the device electrostatics such as, surface potential, threshold voltage and drain current. The pH response is defined as the amount of threshold voltage shift when the pH (in the injected solution) is varied from lower to higher values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, Y., Xiong, P., Yun, C.S., Strouse, G., Zheng, J., Yang, R., et al.: Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. Nano Lett. 8, 4179–4184 (2008)

    Article  Google Scholar 

  2. Li, X.J., Schick, M.: Theory of tunable pH-sensitive vesicles of anionic and cationic lipids or anionic and neutral lipids. Biophys. J. 80, 1703–1711 (2001)

    Article  Google Scholar 

  3. Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K., Kanazawa, H.: Four Na +/H + exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280, 1561–1572 (2005)

    Article  Google Scholar 

  4. Chen, Y., Wang, X., Hong, M., Erramilli, S., Mohanty, P.: Surface-modified silicon nano-channel for urea sensing. Sens. Actuators B Chem. 133, 593–598 (2008)

    Article  Google Scholar 

  5. Kummer, U., Zobeley, J., Brasen, J.C., Fahmy, R., Kindzelskii, A.L., Petty, A.R., et al.: Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: an experimental and computational approach. Biophys. J. 92, 2597–2607 (2007)

    Article  Google Scholar 

  6. Yang, A.S., Honig, B.: On the pH dependence of protein stability. J. Mol. Biol. 231, 459–474 (1993)

    Article  Google Scholar 

  7. Frost, R., Griffin, R.: Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. J. 41, 53–57 (1977)

    Article  Google Scholar 

  8. Royce, P.N.: A discussion of recent developments in fermentation monitoring and control from a practical perspective. Critical Rev. Biotechnol. 13, 117–149 (1993)

    Article  Google Scholar 

  9. Bergveld, P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17(1), 70–71 (1970)

    Article  Google Scholar 

  10. Martinoia, S., Massobrio, G., Lorenzelli, L.: Modeling ISFET microsensor and ISFET-based microsystems: a review. Sens. Actuators B: Chem. 105, 14–27 (2005)

    Article  Google Scholar 

  11. Bergveld, P.: Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19(5), 342–351 (1972)

    Article  Google Scholar 

  12. Im, Y., Lee, C., Vasquez, R.P., Bangar, M.A., Myung, N.V., Menke, E.J., Penner, R.M., Yun, M.: Investigation of a single Pd nanowire for use as a hydrogen sensor. Small 2(3), 356–358 (2006)

    Article  Google Scholar 

  13. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  14. Seabaughand, A.C., Zhang, A.C.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  15. Goel, E., et al.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63, 966–973 (2016)

    Article  Google Scholar 

  16. Rawat, G., et al.: Analytical modeling of threshold voltage of ion-implanted Strained-Si-on-Insulator (SSOI) MOSFETs. J. Nanoelectron. Optoelectron. 9(3), 442–448 (2014)

    Article  Google Scholar 

  17. Sarkar, D., Banerjee, K.: Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors. Appl. Phys. Lett. 100(14), 143108 (2012)

    Article  Google Scholar 

  18. Sarkar, D., Banerjee, K.: Metallic-nanoparticle assisted enhanced band-to-band tunneling current. Applied Physics Letters 99(13), 133116 (2011)

    Google Scholar 

  19. Sarkar, D., Krall, M., Banerjee, K.: Electron-hole duality during band-to-band tunneling process in graphene-nanoribbon tunnel-field-effect-transistors. Appl. Phys. Lett. 97(26), 263109 (2010)

    Article  Google Scholar 

  20. Narang, R., Sasidhar Reddy, K.V., Saxena, M., Gupta, R.S., Gupta, M.: A dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)

    Article  Google Scholar 

  21. Narang, R., Saxena, M., Gupta, M.: Comparative analysis of dielectric-modulated FET and TFET-based biosensor. IEEE Trans. Nanotechnol. 14(3), 427–435 (2015)

    Article  Google Scholar 

  22. Singh, A., Narang, R., Saxena, M., Gupta, M.: Ambipolar behaviour of Tunnel Field Effect Transistor (TFET) as an advantage for biosensing applications. In: Jain, V.K., Verma, A. (eds.) Physics of Semiconductor Devices. ESE, pp. 171–174. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03002-9_43

    Chapter  Google Scholar 

  23. Kumar, S., et al.: A compact 2D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/High-k stacked gate-oxide structure. IEEE Trans. Electron Devices 63(8), 3291–3299 (2016)

    Article  Google Scholar 

  24. TCAD: Sentaurus Device User Manual, Synopsys, CA (2013)

    Google Scholar 

  25. Chung, I.Y., Jang, H., Lee, J., Moon, H., Seo, S.M., Kim, D.H.: Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator. Nanotechnology 23, 065202 (2012)

    Article  Google Scholar 

  26. Pittino, F., Palestri, P., Scarbolo, P., Esseni, D., Selmi, L.: Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors. Solid-State Electron. 98, 63–69 (2014)

    Article  Google Scholar 

  27. Grahame, D.C.: The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947)

    Article  Google Scholar 

  28. Singh, A., Narang, R., Saxena, M., Gupta, M.: Analytical model of pH sensing characteristics of junctionless silicon on insulator ISFET. IEEE Trans. Electron Devices 64(4), 1742–1750 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Narang, R., Saxena, M., Gupta, M. (2017). Analysis of Electrolyte-Insulator-Semiconductor Tunnel Field-Effect Transistor as pH Sensor. In: Kaushik, B., Dasgupta, S., Singh, V. (eds) VLSI Design and Test. VDAT 2017. Communications in Computer and Information Science, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-7470-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7470-7_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7469-1

  • Online ISBN: 978-981-10-7470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics