Advertisement

Background

  • Muhammad UsmanEmail author
  • Vallipuram Muthukkumarasamy
  • Xin-Wen Wu
  • Surraya Khanum
Chapter
  • 462 Downloads

Abstract

A number of novel threats have been developed for low resource networks because of advancements in technology and innovations in attack techniques in the recent years. Prevention-based methods alone, therefore, may not offer a comprehensive security and fault detection solution for sensor networks. Aptly formed detection-based methods can supplement prevention-based methods to provide more robust security mechanisms.

References

  1. 1.
    Y. Zhang, N. Meratnia, P. Havinga, Outlier detection techniques for wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 12(2), 159–170 (2010)Google Scholar
  2. 2.
    A. Perrig, J. Stankovic, D. Wagner, Security in wireless sensor networks. Wirel. Sensor Netw. Commun. ACM 47(6), 53–57 (2004)Google Scholar
  3. 3.
    K. Marzullo, Failures of continuous-valued sensors. ACM Trans. Comput. Syst. (TOCS) 8(4), 284–304 (1990)CrossRefGoogle Scholar
  4. 4.
    T.G. Roosta, Attacks and defenses of ubiquitous sensor networks. Ph.D. thesis, University of California, Berkeley, 2008Google Scholar
  5. 5.
    T. Zia, A. Zomaya, Security issues in wireless sensor networks, in Proceedings of the International Conference on Systems and Networks Communication (2006), p. 40Google Scholar
  6. 6.
    C.P. fleeger, Security in Computing (Prentice Hall Professional Technical Reference, Prentice Hall PTR, New Jersey, 2003)Google Scholar
  7. 7.
    E.C.H. Ngai, Intrusion detection for wireless sensor networks, in PhD Term 2 Paper (Department of computer Science and Engineering, The Chinese University of Hong Kong, 2005), pp. 6–20Google Scholar
  8. 8.
    K. Scarfone, P. Mell, Guide to intrusion detection and prevention systems (idps) (Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology, 2007), pp. 1–127Google Scholar
  9. 9.
    I. Butun, S.D. Morgera, R. Sankar, A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor. 16(1), 266–282 (2014)Google Scholar
  10. 10.
    R. Jurdak, X.R. Wang, O.r Obst, P. Valencia, Wireless sensor network anomalies: diagnosis and detection strategies, in Intelligence-Based Systems Engineering, vol. 10, Intelligent Systems Reference Library (Springer, Berlin, 2011), pp. 309–325Google Scholar
  11. 11.
    M. Usman, V. Muthukkumarsamy, X.-W. Wu, S. Khanum, Anomaly detection in wireless sensor network: challenges and future trends, in Security for Multihop Wireless Networks Edition (Auerbach publications Taylor and Francis Group, USA, 2014a)Google Scholar
  12. 12.
    L.M.A. Bettencourt, A.A. Hagberg, L.B. Larkey, Separating the wheat from the chaff: practical anomaly detection schemes in ecological applications of distributed sensor networks, in Distributed Computing in Sensor Systems (Springer, Berlin, 2007), pp. 223–239Google Scholar
  13. 13.
    W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, P. Deng, Localized outlying and boundary data detection in sensor networks. IEEE Trans. Knowl. Data Eng. 19(8), 1145–1157 (2007)CrossRefGoogle Scholar
  14. 14.
    H.A. Guvenir, M. Kurtcephe, Ranking instances by maximizing the area under roc curve. IEEE Trans. Knowl. Data Eng. 25(10), 2356–2366 (2013)CrossRefGoogle Scholar
  15. 15.
    M.C. Jun, H. Jeong, C.-C.J. Kuo, Distributed spatio-temporal outlier detection in sensor networks, in Proceedings of the SPIE, vol. 5819 (2005), pp. 273–284Google Scholar
  16. 16.
    V. Chandola, A.M Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)Google Scholar
  17. 17.
    A. Gibson, Exposure and Understanding the Histogram (Peachpit press, Prentice Hall Professional Technical Reference, Berkeley, 2011)Google Scholar
  18. 18.
    M. Xie, J. Hu, B. Tian, Histogram-based online anomaly detection in hierarchical wireless sensor networks, in IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (2012), pp. 751–759Google Scholar
  19. 19.
    B. Miladinovic, Kernel Density Estimation of Reliability with Applications to Extreme Value Distribution (BiblioBazaar, 2011)Google Scholar
  20. 20.
    T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Distributed deviation detection in sensor networks. SIGMOD Rec. 32(4), 77–82 (2003)CrossRefGoogle Scholar
  21. 21.
    S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Online outlier detection in sensor data using non-parametric models, in Proceedings of the 32nd International Conference on Very Large Data Bases (2006), pp. 187–198Google Scholar
  22. 22.
    N. Marchenko, C. Bettstetter, Cooperative arq with relay selection: an analytical framework using semi-markov processes. IEEE Trans. Veh. Technol. 63(1), 178–190 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Xie, J. Hu, Y. Xiang, S. Yu, S. Tang, Y. Wang, Modeling oscillation behavior of network traffic by nested hidden markov model with variable state-duration. IEEE Trans. Parallel Distrib. Syst. 24(9), 1807–1817 (2013b)CrossRefGoogle Scholar
  24. 24.
    I.C. Paschalidis, Y. Chen, Anomaly detection in sensor networks based on large deviations of markov chain models, in 47th IEEE Conference on Decision and Control (2008), pp. 2338–2343Google Scholar
  25. 25.
    Y. Gao, C. Chen, J. Bu, W. Dong, D. He, Icad: indirect correlation based anomaly detection in dynamic wsns, in IEEE Wireless Communications and Networking Conference (2011), pp. 647–652Google Scholar
  26. 26.
    S. Zheng, J.S.A. Baras, S. Zheng, J.S. Baras, Sequential anomaly detection in wireless sensor networks and effects of long-range dependent data. Spec. IWSM Issue Seq. Anal. 31(1), 458–480 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    W. Kim, T. He, D. Wang, C. Cao, S. Liang, Assessment of long-term sensor radiometric degradation using time series analysis. IEEE Trans. Geosci. Remote Sens. 52(5), 2960–2976 (2014)CrossRefGoogle Scholar
  28. 28.
    A.K. Singh, B. Giridhar, P.S. Mandal, Fixing data anomalies with prediction based algorithm in wireless sensor networks, in 7th IEEE Conference on Wireless Communication and Sensor Networks, Panna, India, 5–9 Dec (2011), p. 6Google Scholar
  29. 29.
    M.C. Chuah, F. Fu, Ecg anomaly detection via time series analysis, in Frontiers of High Performance Computing and Networking ISPA 2007 Workshops. Lecture Notes in Computer Science, vol. 4743 (Springer, Berlin, 2007), pp. 123–135Google Scholar
  30. 30.
    A.K.M.E. Saleh, M. Arashi, S.M.M. Tabatabaey, Statistical Inference for Models with Multivariate t-Distributed Errors (Wiley, USA, 2014)zbMATHGoogle Scholar
  31. 31.
    D.-I. Curiac, O. Banias, F. Dragan, C. Volosencu, O. Dranga, Malicious node detection in wireless sensor networks using an autoregression technique, in Third International Conference on Networking and Services (2007), pp. 83–83Google Scholar
  32. 32.
    S.Y. Kim, M. Imada, M. Ohta, Detecting anomalous events in ubiquitous sensor environments using bayesian networks and nonparametric regression, in 21st International Conference on Advanced Information Networking and Applications (2007), pp. 236–243Google Scholar
  33. 33.
    S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Pearson Education, USA, 2009)zbMATHGoogle Scholar
  34. 34.
    T. Trappenberg, Artificial Intelligence: A Modern Approach, 2nd edn. (Oxford University Press, Great Britain, 2010)Google Scholar
  35. 35.
    M. Walchli, T. Braun, Efficient signal processing and anomaly detection in wireless sensor networks, in Applications of Evolutionary Computing. Lecture Notes in Computer Science (Springer, Berlin Heidelberg, 2009), pp. 81–86Google Scholar
  36. 36.
    Y.Y. Li, L.E. Parker, Classification with missing data in a wireless sensor network, in IEEE Southeastcon (2008), pp. 533–538Google Scholar
  37. 37.
    J. Timmis, P. Andrews, E. Hart, On artificial immune systems and swarm intelligence. Swarm Intell. 4(4), 247–273 (2010)CrossRefGoogle Scholar
  38. 38.
    R. Fu, K. Zheng, T. LU, D. Zhang, Y. Yang, Biologically inspired anomaly detection for hierarchical wireless sensor networks. J. Netw. 7(8), 1214–1219 (2012)Google Scholar
  39. 39.
    H. Salmon, C.M.D. Farias, P. Loureiro, L. Pirmez, S. Rossetto, P.D.A. Rodrigues, R. Pirmez, F. Delicato, L.F.R. Carmo, Intrusion detection system for wireless sensor networks using danger theory immune-inspired techniques. Int. J. Wireless Inf. Netw. 20(1), 39–66 (2013)CrossRefGoogle Scholar
  40. 40.
    O. Roeva, Genetic Algorithms in Applications, 1st edn. (InTech, Croatia, 2012)zbMATHGoogle Scholar
  41. 41.
    R. Khanna, H. Liu, H.-H. Chen, Reduced complexity intrusion detection in sensor networks using genetic algorithm, in IEEE International Conference on Communications (2009), pp. 1–5Google Scholar
  42. 42.
    H.L. Gao, G. Chen, W. Guo, A gep-based anomaly detection scheme in wireless sensor networks, in International Conference on Computational Science and Engineering, CSE 2009, vol. 2 (2009), pp. 817–822Google Scholar
  43. 43.
    A. Agah, S.K. Das, K. Basu, M. Asadi, Intrusion detection in sensor networks: a non-cooperative game approach, in Proceedings of the Third IEEE International Symposium on Network Computing and Applications, NCA (2004), pp. 343–346Google Scholar
  44. 44.
    Y.B. Reddy, A game theory approach to detect malicious nodes in wireless sensor networks, in Third International Conference on Sensor Technologies and Applications (2009), pp. 462–468Google Scholar
  45. 45.
    M. Ketel, Applying the mobile agent paradigm to distributed intrusion detection in wireless sensor networks, in 40th Southeastern Symposium on System Theory (2008), pp. 74–78Google Scholar
  46. 46.
    M. Pugliese, A. Giani, F. Santucci, Weak process models for attack detection in a clustered sensor network using mobile agents, in Sensor Systems and Software, vol. 24, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ed. by S. Hailes, S. Sicari, G. Roussos (Springer, Berlin, 2010), pp. 33–50CrossRefGoogle Scholar
  47. 47.
    S.I. Eludiora, O.O. Abiona, A.O. Oluwatope, S.A. Bello, M.L. Sanni, D.O. Ayanda, C.E. Onime, E.R. Adagunodo, L.O. Kehinde, A distributed intrusion detection scheme for wireless sensor networks, in IEEE International Conference on Electro/Information Technology (EIT) (2011), pp. 1–5Google Scholar
  48. 48.
    S. Khanum, M. Usman, A. Alwabel, Mobile agent based hierarchical intrusion detection system in wireless sensor networks. Int. J. Comput. Sci. Issues (IJCSI) 9(3), 101–108 (2012)Google Scholar
  49. 49.
    C. Krugel, T. Toth, Applying mobile agent technology to intrusion detection, in ICSE Workshop on Software Engineering and Mobility (2001), pp. 1–5Google Scholar
  50. 50.
    T. Bokareva, N. Bulusu, S. Jha, Learning sensor data characteristics in unknown environments, in Proceedings of the Third Annual International Conference on Mobile and Ubiquitous Systems: Networking Services (2006), pp. 1–8Google Scholar
  51. 51.
    K.P. Murphy, Machine Learning: A Probabilistic Perspective, 1st edn. (MIT Press, USA, 2012)zbMATHGoogle Scholar
  52. 52.
    X. Zhu, Semi-supervised learning with graphs. Ph.D. thesis, Carnegie Mellon University, 2005Google Scholar
  53. 53.
    S. Rajasegarar, C. Leckie, M. Palaniswami, J.C. Bezdek, Quarter sphere based distributed anomaly detection in wireless sensor networks, in IEEE International Conference on Communications (2007), pp. 3864–3869Google Scholar
  54. 54.
    Z. Xiao, C. Liu, C. Chen, An anomaly detection scheme based on machine learning for wsn, in 1st International Conference on Information Science and Engineering (2009), pp. 3959–3962Google Scholar
  55. 55.
    T.H. Lim, Detecting anomalies in wireless sensor networks. Ph.D. thesis, Department of Computer Science, University of York, 2010Google Scholar
  56. 56.
    C. Boutsidis, M. Magdon-Ismail, Deterministic feature selection for k-means clustering. IEEE Trans. Inf. Theory 59(9), 6099–6110 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    S. Rajasegarar, C. Leckie, M. Palaniswami, J.C. Bezdek, Distributed anomaly detection in wireless sensor networks, in 10th IEEE Singapore International Conference on Communication systems (2006), pp. 1–5Google Scholar
  58. 58.
    M. Xie, S. Han, B. Tian, Highly efficient distance-based anomaly detection through univariate with pca in wireless sensor networks, in 10th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (2011), pp. 564–571Google Scholar
  59. 59.
    S. Rajasegarar, A. Gluhak, M.A. Imran, M. Nati, M. Moshtaghi, C. Leckie, M. Palaniswami, Ellipsoidal neighbourhood outlier factor for distributed anomaly detection in resource constrained networks. Pattern Recogn. 47(9), 2867–2879 (2014a)CrossRefGoogle Scholar
  60. 60.
    S. Rajasegarar, C. Leckie, M. Palaniswami, Hyperspherical cluster based distributed anomaly detection in wireless sensor networks. J. Parallel Distrib. Comput. 74(1), 1833–1847 (2014b)CrossRefGoogle Scholar
  61. 61.
    T. Bokareva, N. Bulusu, S. Jha, Graph theory based aggregation of sensor readings in wireless sensor networks, in Proceedings of the 33rd IEEE Conference on Local Computer Networks (LCN) (2008), pp. 514–515Google Scholar
  62. 62.
    E.C.-H. Ngai, J. Liu, M.R. Lyu, On the intruder detection for sinkhole attack in wireless sensor networks, in IEEE International Conference on Communications, vol. 8 (2006), pp. 3383–3389Google Scholar
  63. 63.
    E.C.-H. Ngai, J. Liu, M.R. Lyu, An efficient intruder detection algorithm against sinkhole attacks in wireless sensor networks. Comput. Commun. 30(11–12), 2353–2364 (2007)CrossRefGoogle Scholar
  64. 64.
    J.-W. Ho, D. Liu, M. Wright, S.K. Das, Distributed detection of replica node attacks with group deployment knowledge in wireless sensor networks. Ad Hoc Netw. 7(8), 1476–1488 (2009)CrossRefGoogle Scholar
  65. 65.
    J. Yuan, H. Zhou, H. Chen, Subjective logic-based anomaly detection framework in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012(2012), 13 (2011)Google Scholar
  66. 66.
    S.H. Chi, T.H. Cho, Fuzzy logic anomaly detection scheme for directed diffusion based sensor networks, in Fuzzy Systems and Knowledge Discovery, vol. 4223, Lecture Notes in Computer Science, ed. by L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Springer, Berlin, 2006), pp. 725–734CrossRefGoogle Scholar
  67. 67.
    Y. Ponomarchuk, D.W. Seo, Intrusion detection based on traffic analysis and fuzzy inference system in wireless sensor networks. J. Converg. 1(1), 35–42 (2010)Google Scholar
  68. 68.
    O. Linda, M. Manic, T. Vollmer, J. Wright, Fuzzy logic based anomaly detection for embedded network security cyber sensor, in IEEE Symposium on Computational Intelligence in Cyber Security (CICS) (2011), pp. 202–209Google Scholar
  69. 69.
    H. Kumarage, I. Khalil, Z. Tari, A. Zomaya, Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling. J. Parallel Distrib. Comput. 73(6), 790–806 (2013b)CrossRefGoogle Scholar
  70. 70.
    M. Moshtaghi, J. Bezdek, C. Leckie, S. Karunasekera, M. Palaniswami, Evolving fuzzy rules for anomaly detection in data streams. IEEE Trans. Fuzzy Syst. PP(99), 1 (2014b)Google Scholar
  71. 71.
    I. Onat, A. Miri, An intrusion detection system for wireless sensor networks, in Proceedings of IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, vol. 3 (2005), pp. 253–259Google Scholar
  72. 72.
    V.S. Bhuse, Lightweight intrusion detection: a second line of defense for unguarded wireless sensor networks. Ph.D. thesis, Department of Computer Science, Western Michigan University, 2007Google Scholar
  73. 73.
    D.E. Boubiche, Z. Bilami, Cross layer intrusion detection system for wireless sensor network. Int. J. Netw. Secur. Appl. (IJNSA) 4(2), 35–52 (2012)Google Scholar
  74. 74.
    M. Becker, M. Drozda, S. Schaust, S. Bohlmann, H. Szczerbicka, On classification approaches for misbehavior detection in wireless sensor networks, J. Comp. 4(5) 357–365 (2009)Google Scholar
  75. 75.
    H. Dai, H. Liu, Z. Jia, T. Chen, A multivariate classification algorithm for malicious node detection in large-scale wsns, in Proceedings of IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (2012), pp. 239–245Google Scholar
  76. 76.
    T. Li, M. Song, M. Alam, Compromised sensor nodes detection: a quantitative approach, in Proceedings of 28th International Conference on Distributed Computing Systems Workshops (2008), pp. 352–357Google Scholar
  77. 77.
    I. Krontiris, T. Dimitriou, F.C. Freiling, Towards intrusion detection in wireless sensor networks, in Proceedings of 13th European Wireless Conference (2007), p. 7Google Scholar
  78. 78.
    B. Krishnamachari, I. Iyengar, Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Trans. Comput. 3, 241–250 (2004)CrossRefGoogle Scholar
  79. 79.
    A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, V. Kumar, A comparative study of anomaly detection schemes in network intrusion detection, in Proceedings of the Third SIAM International Conference on Data Mining (2003), pp. 1–8Google Scholar
  80. 80.
    M. Usman, V. Muthukkumarasamy, X.-W. Wu, S. Khanum, Securing mobile agent based wireless sensor network applications on middleware, in International Symposium on Communications and Information Technologies (ISCIT) (2012), pp. 707–712Google Scholar
  81. 81.
    Y.M. Kwon, S. Sundresh, K.L Mechitov, G. Agha, Actornet: an actor platform for wireless sensor networks, in Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (2006), pp. 1297–1300Google Scholar
  82. 82.
    C.-L. Fok, G.-C.n Roman, C. Lu, Agilla: a mobile agent middleware for self-adaptive wireless sensor networks. ACM Trans. Auton. Adapt. Syst. 4(3), 16:1–16:26 (2009)Google Scholar
  83. 83.
    F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, Maps: a mobile agent platform for java sun spots, in Proceeding of the Third International Workshop on Agent Technology for Sensor Networks (2009), p. 8Google Scholar
  84. 84.
    C. Muldoon, G.M.P. OHare, R. Collier, M.J. OGrady, Agent factory micro edition: a framework for ambient applications, in Computational Science, ed. by V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Dongarra. Lecture Notes in Computer Science, vol. 3993 (Springer, Berlin, 2006), pp. 727–734Google Scholar
  85. 85.
    G. Vigna, Cryptographic traces for mobile agents, in Mobile Agents and Security (1998), pp. 137–153Google Scholar
  86. 86.
    J. Zhang, Y. Wang, V. Varadharajan, A new security scheme for integration of mobile agents and web services, in Second International Conference on Internet and Web Applications and Services (2007), p. 43Google Scholar
  87. 87.
    Y. Mu, R.H. Deng, M. Zhang, Q. Zhang, Secure mobile agents with designated hosts, in Proceedings of IEEE Third International Conference on Network and System Security (2009), pp. 286–293Google Scholar
  88. 88.
    N.S. Malik, D. Ko, H.H. Cheng, A secure migration process for mobile agents. Softw. Pract. Exp. 41(1), 87–101 (2011)Google Scholar
  89. 89.
    O. Esparza, J.L. Munoz, J. Tomas-Builart, M. Soriano, An infrastructure for detecting and punishing malicious hosts using mobile agent watermarking. Wireless Commun. Mob. Comput. 11(11), 1446–1462 (2011)CrossRefGoogle Scholar
  90. 90.
    M. Usman, V. Muthukkumarasamy, X.-W. Wu, Formal verification of mobile agent based anomaly detection in wireless sensor networks, in Proceedings of IEEE 38th Conference on Local Computer Networks Workshops (LCN Workshops) (2013), pp. 1001–1009Google Scholar
  91. 91.
    S. Nanz, C. Hankin, A framework for security analysis of mobile wireless networks. Theoret. Comput. Sci. 367(1–2), 203–227 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    N. Mezzetti, D. Sangiorgi, Towards a calculus for wireless systems. Electron. Notes Theor. Comput. Sci. 158(1), 331–353 (2006)CrossRefzbMATHGoogle Scholar
  93. 93.
    M. Merro, F. Ballardin, E. Sibilio, A timed calculus for wireless systems. Theoret. Comput. Sci. 412(47), 6585–6611 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    J. Godskesen, A calculus for mobile ad hoc networks, In Coordination Models and Languages (Springer, Berlin Heidelberg 2007), pp. 132–150Google Scholar
  95. 95.
    M. Merro, An observational theory for mobile ad hoc networks. Inf. Comput. 207(2), 194–208 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    A. Singh, C.R. Ramakrishnan, S. Smolka, A process calculus for mobile ad hoc networks, in Coordination Models and Languages, vol. 5052, Lecture Notes in Computer Science, ed. by D. Lea, G. Zavattaro (Springer, Berlin Heidelberg, 2008), pp. 296–314CrossRefGoogle Scholar
  97. 97.
    Y.W. Law, R. Corin, S. Etalle, P.H. Hartel, A formally verified decentralized key management architecture for wireless sensor networks, in Personal Wireless Communications, vol. 2775, Lecture Notes in Computer Science, ed. by M. Conti, S. Giordano, E. Gregori, S. Olariu (Springer, Berlin, 2003), pp. 27–39CrossRefGoogle Scholar
  98. 98.
    F. Werner, Applied formal methods in wireless sensor networks. Ph.D. thesis, Faculty of Computer Science, Karlsruhe Institute of Technology, 2009Google Scholar
  99. 99.
    A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Drielsma, P. Heam, O. Kouchnarenko, J. Mantovani, S. Modersheim, D. Oheimb, M. Rusinowitch, J. Santiago, L. Turuani, M. Vigano, L. Vigneron, The avispa tool for the automated validation of internet security protocols and applications, in Computer Aided Verification, ed. by D. Lea, G. Zavattaro (Springer, Berlin, 2005), pp. 281–285Google Scholar
  100. 100.
    T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  101. 101.
    D. He, L. Cui, H. Huang, M. Ma, Design and verification of enhanced secure localization scheme in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 20(7), 1050–1058 (2009)CrossRefGoogle Scholar
  102. 102.
    H. Rodriguez, R. Carvajal, B. Ontiveros, I. Soto, R. Carrasco, Using petri net for modeling and analysis of an encryption scheme for wireless sensor networks, in Petri Nets Applications, ed. by P. Pawlewski (InTech, Croatia, 2010)Google Scholar
  103. 103.
    H.-R. Tseng, R.-H. Jan, W. Yang, A robust user authentication scheme with self-certificates for wireless sensor networks. Secur. Commun. Netw. 4(8), 815–824 (2011)CrossRefGoogle Scholar
  104. 104.
    Z. Sbai, M. Escheikh, Model checking techniques for verication of an encryption scheme for wireless sensor networks, in Proceeding of the International Conference on Information Processing and Wireless Systems (2012), p. 6Google Scholar
  105. 105.
    Z. Bankovic, J.C. Vallejo, P. Malagon, A. Araujo, J.M. Moya, Eliminating routing protocol anomalies in wireless sensor networks using ai techniques, in Proceedings of the 3rd ACM Workshop on Artificial Intelligence and Security (2010), pp. 8–13Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Muhammad Usman
    • 1
    Email author
  • Vallipuram Muthukkumarasamy
    • 2
  • Xin-Wen Wu
    • 2
  • Surraya Khanum
    • 1
  1. 1.Department of Computer SciencesQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.School of Information and Communication TechnologyGriffith UniversityGold CoastAustralia

Personalised recommendations