Advertisement

Rice Plant Architecture: Molecular Basis and Application in Breeding

  • Shiwei Bai
  • Steven M. Smith
  • Jiayang Li
Chapter

Abstract

Shoot architecture in rice is determined by the number of leaves, stems, and panicles and by their size, shape, and position on the plant. These factors determine the effectiveness of light interception, the degree of competition between neighboring plants, and ultimately the number and mass of grains produced. Plant hormones including auxin, cytokinins, gibberellins, strigolactones, and brassinosteroids play key roles in regulating shoot development and architecture. The SEMI-DWARF1 (SD1) gene has contributed greatly to rice yields by redirecting resources from elongation growth to panicle development, providing resistance to lodging and increased harvest index. The mechanism of control of tillering by strigolactone signaling has been determined in recent years providing valuable information to help understand the timing and number of tillers produced. Genes that have been selected for increased yield have now been identified at the molecular level such as IDEAL PLANT ARCHITECTURE1 (IPA1), Grain size 3 (GS3), and GRAIN NUMBER, PLANT HEIGHT, AND HEADING DATE 7 (GHD7). The function of these genes in controlling gene transcription and shoot development is helping us to understand the molecular basis of plant architecture. The future offers great potential for the rational design of plant architecture using molecular breeding techniques.

Keywords

Tiller number Panicle development Leaf development Dwarfing genes Ideal plant architecture Phyllotaxy Auxin Cytokinins Gibberellins Strigolactones Brassinosteroids Molecular breeding Rational design 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFD0101800), the National Natural Science Foundation of China (91635301), and the Beijing Short-Term Recruitment Program of Foreign Experts.

References

  1. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351.  https://doi.org/10.1126/science.1218094 PubMedCrossRefGoogle Scholar
  2. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51(6):1019–1029.  https://doi.org/10.1111/j.1365-313X.2007.03210.x PubMedCrossRefGoogle Scholar
  3. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50(8):1416–1424.  https://doi.org/10.1093/pcp/pcp091 PubMedCrossRefGoogle Scholar
  4. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci U S A 96(18):10284–10289.  https://doi.org/10.1073/pnas.96.18.10284 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745.  https://doi.org/10.1126/science.1113373 PubMedCrossRefGoogle Scholar
  6. Bai M-Y, Zhang L-Y, Gampala SS, Zhu S-W, Song W-Y, Chong K, Wang Z-Y (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104(34):13839–13844.  https://doi.org/10.1073/pnas.0706386104 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SON, Meharg C, Wright MH, Liu J, Meng X, Wang Y, Li J, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 111(6):2379–2384.  https://doi.org/10.1073/pnas.1317360111 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2:15195.  https://doi.org/10.1038/nplants.2015.195 PubMedCrossRefGoogle Scholar
  9. Chen W, Xu Z, Zhang L, Zhang W, Ma D (2007) Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin 40(5):869–874.  https://doi.org/10.3321/j.issn:0578-1752.2007.05.001 Google Scholar
  10. Choi M-S, Woo M-O, Koh E-B, Lee J, Ham T-H, Seo HS, Koh H-J (2012) Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep 31(1):57–65.  https://doi.org/10.1007/s00299-011-1139-2 PubMedCrossRefGoogle Scholar
  11. Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet 12(11):e1006412.  https://doi.org/10.1371/journal.pgen.1006412 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J 77(4):547–557.  https://doi.org/10.1111/tpj.12405 PubMedCrossRefGoogle Scholar
  13. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015) Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2:15203.  https://doi.org/10.1038/nplants.2015.203 PubMedCrossRefGoogle Scholar
  14. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171.  https://doi.org/10.1007/s00122-006-0218-1 PubMedCrossRefGoogle Scholar
  15. Fan C, Yu S, Wang C, Xing Y (2009) A causal C–A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465–472.  https://doi.org/10.1007/s00122-008-0913-1 PubMedCrossRefGoogle Scholar
  16. Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G (2012) Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J 10(5):524–532.  https://doi.org/10.1111/j.1467-7652.2012.00679.x PubMedCrossRefGoogle Scholar
  17. Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Gen Genomics 279(5):499–507.  https://doi.org/10.1007/s00438-008-0328-3 CrossRefGoogle Scholar
  18. Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci U S A 96(13):7575–7580.  https://doi.org/10.1073/pnas.96.13.7575 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430(7003):1031–1034.  https://doi.org/10.1038/nature02778 PubMedCrossRefGoogle Scholar
  20. Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37(4):626–634.  https://doi.org/10.1111/j.1365-313X.2003.01990.x PubMedCrossRefGoogle Scholar
  21. Guo L, Cheng S, Qian Q (2008) Progress and prospects of breeding by gene design in rice. Chin J Rice Sci 22(6):650–657Google Scholar
  22. Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22(8):2680–2696.  https://doi.org/10.1105/tpc.110.075549 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32(4):495–508.  https://doi.org/10.1046/j.1365-313X.2002.01438.x PubMedCrossRefGoogle Scholar
  24. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910.  https://doi.org/10.1105/tpc.014712 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17(8):2243–2254.  https://doi.org/10.1105/tpc.105.030973 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q (2010) Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73(3):283–292.  https://doi.org/10.1007/s11103-010-9614-7 PubMedCrossRefGoogle Scholar
  27. Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y (2013) The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet 9(3):e1003391.  https://doi.org/10.1371/journal.pgen.1003391 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8(10):1455–1465.  https://doi.org/10.1016/j.molp.2015.07.002 PubMedCrossRefGoogle Scholar
  29. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497.  https://doi.org/10.1038/ng.352 PubMedCrossRefGoogle Scholar
  30. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13(5):999–1010.  https://doi.org/10.1105/tpc.13.5.999 PubMedPubMedCentralCrossRefGoogle Scholar
  31. International Rice Research Institute (IRRI) (1967) Annual report for 1966. International Rice Research Institute, Manila, pp 59–82Google Scholar
  32. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46(1):79–86.  https://doi.org/10.1093/pcp/pci022 PubMedCrossRefGoogle Scholar
  33. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B-I, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45(6):707–711.  https://doi.org/10.1038/ng.2612 PubMedCrossRefGoogle Scholar
  34. Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98(15):8909–8914.  https://doi.org/10.1073/pnas.141239398 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54(4):533–547.  https://doi.org/10.1023/B:PLAN.0000038261.21060.47 PubMedCrossRefGoogle Scholar
  36. Itoh J-I, Hibara K-I, Kojima M, Sakakibara H, Nagato Y (2012) Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72(6):869–881.  https://doi.org/10.1111/j.1365-313x.2012.05123.x PubMedCrossRefGoogle Scholar
  37. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504(7480):401–405.  https://doi.org/10.1038/nature12870 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541–544.  https://doi.org/10.1038/ng.591 PubMedCrossRefGoogle Scholar
  39. Jin J, Huang W, Gao J-P, Yang J, Shi M, Zhu M-Z, Luo D, Lin H-X (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40(11):1365–1369.  https://doi.org/10.1038/ng.247 PubMedCrossRefGoogle Scholar
  40. Kagiyama M, Hirano Y, Mori T, Kim S-Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18(2):147–160.  https://doi.org/10.1111/gtc.12025 PubMedCrossRefGoogle Scholar
  41. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822.  https://doi.org/10.1038/35093585 PubMedCrossRefGoogle Scholar
  42. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422(6932):618–621.  https://doi.org/10.1038/nature01518 PubMedCrossRefGoogle Scholar
  43. Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17(5):402–410.  https://doi.org/10.1038/cr.2007.38 PubMedCrossRefGoogle Scholar
  44. Li D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, Xu ZH, Li J, Chong K (2009a) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J 7(8):791–806.  https://doi.org/10.1111/j.1467-7652.2009.00444.x PubMedCrossRefGoogle Scholar
  45. Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y (2009b) Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J 60(6):1055–1069.  https://doi.org/10.1111/j.1365-313X.2009.04022.x PubMedCrossRefGoogle Scholar
  46. Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhang J, Li J, Wang Y (2009c) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58(4):592–605.  https://doi.org/10.1111/j.1365-313X.2009.03799.x PubMedCrossRefGoogle Scholar
  47. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010a) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20(7):838–849.  https://doi.org/10.1038/cr.2010.69 PubMedCrossRefGoogle Scholar
  48. Li L, Shi Z-Y, Li L, Shen G-Z, Wang X-Q, An L-S, Zhang J-L (2010b) Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant 3(5):807–817.  https://doi.org/10.1093/mp/ssq022 PubMedCrossRefGoogle Scholar
  49. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269.  https://doi.org/10.1038/ng.977 PubMedCrossRefGoogle Scholar
  50. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y-Q, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110(8):3167–3172.  https://doi.org/10.1073/pnas.1300359110 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li C, Zou X, Zhang C, Shao Q, Liu J, Liu B, Li H, Zhao T (2016a) OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One 11(6):e0156413.  https://doi.org/10.1371/journal.pone.0156413 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016b) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377.  https://doi.org/10.3389/fpls.2016.00377 PubMedPubMedCentralGoogle Scholar
  53. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21(5):1512–1525.  https://doi.org/10.1105/tpc.109.065987 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J (2012) Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 3:752.  https://doi.org/10.1038/ncomms1716 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu J, Tao H, Shi S, Ye W, Qian Q, Guo L (2012) Genetics and breeding improvement for panicle type in rice. Chin J Rice Sci 26(2):227–234.  https://doi.org/10.3969/j.issn.1001-7216.2012.02.013 Google Scholar
  56. Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci U S A 112(35):11102–11107.  https://doi.org/10.1073/pnas.1512748112 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20(10):2603–2618.  https://doi.org/10.1105/tpc.108.060913 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J (2013) Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25(10):3743–3759.  https://doi.org/10.1105/tpc.113.113639 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lu Z, Shao G, Xiong J, Jiao Y, Wang J, Liu G, Meng X, Liang Y, Xiong G, Wang Y, Li J (2015) MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics 42(2):71–78.  https://doi.org/10.1016/j.jgg.2014.12.005 PubMedCrossRefGoogle Scholar
  60. Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47(2):181–191.  https://doi.org/10.1093/pcp/pci233 PubMedCrossRefGoogle Scholar
  61. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584.  https://doi.org/10.1073/pnas.1014419107 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Margis-Pinheiro M, Zhou X-R, Zhu Q-H, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23(12):819–833.  https://doi.org/10.1007/s00299-004-0896-6 PubMedCrossRefGoogle Scholar
  63. McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci 143(2–3):137–150.  https://doi.org/10.1017/S0021859605005083 CrossRefGoogle Scholar
  64. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9(1):11–17.  https://doi.org/10.1093/dnares/9.1.11 PubMedCrossRefGoogle Scholar
  65. Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M (2006) The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol 140(2):580–590.  https://doi.org/10.1104/pp.105.072330 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H-Y (2011) Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J 65(1):77–86.  https://doi.org/10.1111/j.1365-313X.2010.04404.x PubMedCrossRefGoogle Scholar
  67. Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21(4):1095–1108.  https://doi.org/10.1105/tpc.108.065425 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Peng S, Khush G, Cassman K (1994) Evolution of the new plant ideotype for increased yield potential. In: Cassman KG (ed) Breaking the yield barrier. Proceedings of a workshop on rice yield potential in favourable environments. International Rice Research Institute, Philippines, pp 5–20Google Scholar
  69. Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crop Res 108(1):32–38.  https://doi.org/10.1016/j.fcr.2008.04.001 CrossRefGoogle Scholar
  70. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147(4):1947–1959.  https://doi.org/10.1104/pp.108.118778 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Qi P, Lin Y-S, Song X-J, Shen J-B, Huang W, Shan J-X, Zhu M-Z, Jiang L, Gao J-P, Lin H-X (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3. Cell Res 22(12):1666–1680.  https://doi.org/10.1038/cr.2012.151 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Qian Q, Yang C, Guo L (2007) Breeding by gene design in rice. Science Press, BeijingGoogle Scholar
  73. Qian Q, Guo L, Smith SM, Li J (2016) Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev 3(3):283–294.  https://doi.org/10.1093/nsr/nww006 CrossRefGoogle Scholar
  74. Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15(2):144–147.  https://doi.org/10.1016/j.copbio.2004.02.003 PubMedCrossRefGoogle Scholar
  75. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24(1):105–109.  https://doi.org/10.1038/nbt1173 PubMedCrossRefGoogle Scholar
  76. Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci U S A 111(30):11199–11204.  https://doi.org/10.1073/pnas.1411859111 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702.  https://doi.org/10.1038/416701a PubMedCrossRefGoogle Scholar
  78. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299(5614):1896–1898.  https://doi.org/10.1126/science.1081077 PubMedCrossRefGoogle Scholar
  79. Smith SM, Li C, Li J (2017) 1 – hormone function in plants. In: Hormone metabolism and signaling in plants. Academic Press, pp 1–38.  https://doi.org/10.1016/B978-0-12-811562-6.00001-3
  80. Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630.  https://doi.org/10.1038/ng2014 PubMedCrossRefGoogle Scholar
  81. Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci U S A 112(1):76–81.  https://doi.org/10.1073/pnas.1421127112 PubMedCrossRefGoogle Scholar
  82. Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X, Jing Y, Liu G, Xiong G, Duan J, Yao X-F, Liu C-M, Li H, Wang Y, Li J (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27:1128–1141PubMedPubMedCentralCrossRefGoogle Scholar
  83. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99(13):9043–9048.  https://doi.org/10.1073/pnas.132266399 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129(5):1131–1141.  https://doi.org/10.3410/f.1005005.58504 PubMedGoogle Scholar
  85. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23(9):3276–3287.  https://doi.org/10.1105/tpc.111.088765 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182(4):1323–1334.  https://doi.org/10.1534/genetics.109.103002 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40(11):1360–1364.  https://doi.org/10.1038/ng.197 PubMedCrossRefGoogle Scholar
  88. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17(3):776–790.  https://doi.org/10.1105/tpc.104.024950 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C-J, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151(2):669–680.  https://doi.org/10.1104/pp.109.140806 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H-Y (2015) Axillary meristem formation in rice requires the WUSCHEL Ortholog TILLERS ABSENT1. Plant Cell 27(4):1173–1184.  https://doi.org/10.1105/tpc.15.00074 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58(5):803–816.  https://doi.org/10.1111/j.1365-313X.2009.03825.x PubMedCrossRefGoogle Scholar
  92. Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24(6):2562–2577.  https://doi.org/10.1105/tpc.112.097394 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci U S A 97(21):11638–11643.  https://doi.org/10.1073/pnas.97.21.11638 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-Y, Yue-ie CH, Kitano H, Yamaguchi I (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698.  https://doi.org/10.1038/nature04028 PubMedCrossRefGoogle Scholar
  95. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19(7):2140–2155.  https://doi.org/10.1105/tpc.106.043729 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279.  https://doi.org/10.1146/annurev.arplant.59.032607.092902 PubMedCrossRefGoogle Scholar
  97. Wang L, Xu Y-Y, Ma Q-B, Li D, Xu Z-H, Chong K (2006) Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res 16(12):916–922.  https://doi.org/10.1038/sj.cr.7310111 PubMedCrossRefGoogle Scholar
  98. Wang L, Xu Y, Zhang C, Ma Q, Joo S-H, Kim S-K, Xu Z, Chong K (2008) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One 3(10):e3521.  https://doi.org/10.1371/journal.pone.0003521 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wang L, Wang Z, Xu Y, Joo S-H, Kim S-K, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57(3):498–510.  https://doi.org/10.1111/j.1365-313X.2008.03707.x PubMedCrossRefGoogle Scholar
  100. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954.  https://doi.org/10.1038/ng.2327 PubMedCrossRefGoogle Scholar
  101. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015a) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47(8):944–948.  https://doi.org/10.1038/ng.3346 PubMedCrossRefGoogle Scholar
  102. Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q (2015b) Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci U S A 112(50):15504–15509.  https://doi.org/10.1073/pnas.1521949112 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015c) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47(8):949–954.  https://doi.org/10.1038/ng.3352 PubMedCrossRefGoogle Scholar
  104. Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J (2017) Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 PROTEIN levels to regulate plant architecture in rice. Plant Cell 29(4):697–707.  https://doi.org/10.1105/tpc.16.00879 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12):1199–1209.  https://doi.org/10.1038/cr.2008.307 PubMedCrossRefGoogle Scholar
  106. Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Grain number, plant height, and heading Date7 is a central regulator of growth, development, and stress response. Plant Physiol 164(2):735–747.  https://doi.org/10.1104/pp.113.231308 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wu R, Li S, He S, Waßmann F, Yu C, Qin G, Schreiber L, Qu L-J, Gu H (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and arabidopsis. Plant Cell 23(9):3392–3411.  https://doi.org/10.1105/tpc.111.088625 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161(1):317–329.  https://doi.org/10.1104/pp.112.208496 PubMedCrossRefGoogle Scholar
  109. Xiang J-J, Zhang G-H, Qian Q, Xue H-W (2012) SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice LEAF rolling by regulating the formation of bulliform cells. Plant Physiol 159(4):1488–1500.  https://doi.org/10.1104/pp.112.199968 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xu C, Wang Y, Yu Y, Duan J, Liao Z, Xiong G, Meng X, Liu G, Qian Q, Li J (2012) Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun 3:750.  https://doi.org/10.1038/ncomms1743 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Xu F, Fang J, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, Wang G, Chu C (2015) Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ 38(4):800–811.  https://doi.org/10.1111/pce.12452 PubMedCrossRefGoogle Scholar
  112. Xue D-W, Qian Q (2007) Genetic basis and resources innovation of super rice breeding in China. J Shenyang Agric Univ 38(5):667Google Scholar
  113. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767.  https://doi.org/10.1038/ng.143 PubMedCrossRefGoogle Scholar
  114. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1605.  https://doi.org/10.1105/tpc.12.9.1591 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yan W-H, Wang P, Chen H-X, Zhou H-J, Li Q-P, Wang C-R, Ding Z-H, Zhang Y-S, Yu S-B, Xing Y-Z, Zhang Q-F (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4(2):319–330.  https://doi.org/10.1093/mp/ssq070
  116. Yang S-Q, Li W-Q, Miao H, Gan P-F, Qiao L, Chang Y-L, Shi C-H, Chen K-M (2016) REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice 9:37.  https://doi.org/10.1186/s12284-016-0105-6 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127(4):1425–1429.  https://doi.org/10.1104/pp.010710 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473.  https://doi.org/10.1038/nature19073 PubMedCrossRefGoogle Scholar
  119. Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48(5):678–688.  https://doi.org/10.1093/pcp/pcm042 PubMedCrossRefGoogle Scholar
  120. Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52(5):891–898.  https://doi.org/10.1111/j.1365-313X.2007.03284.x PubMedCrossRefGoogle Scholar
  121. Zhang G-H, Xu Q, Zhu X-D, Qian Q, Xue H-W (2009a) SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21(3):719–735.  https://doi.org/10.1105/tpc.108.061457 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang L-Y, Bai M-Y, Wu J, Zhu J-Y, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, Kim S-H, Fujioka S, Lin W-H, Chong K, Lu T, Wang Z-Y (2009b) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and arabidopsis. Plant Cell 21(12):3767–3780.  https://doi.org/10.1105/tpc.109.070441 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L, Luo G, Wang X, Chong K (2012a) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8(4):e1002686.  https://doi.org/10.1371/journal.pgen.1002686 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109(52):21534–21539.  https://doi.org/10.1073/pnas.1219776110 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang C, Bai M-Y, Chong K (2014a) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33(5):683–696.  https://doi.org/10.1007/s00299-014-1578-7 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014b) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10(12):1028–1033.  https://doi.org/10.1038/nchembio.1660 PubMedCrossRefGoogle Scholar
  127. Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP, Wu CY, Wan JM (2015) A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.) Plant Biol 17(2):437–448.  https://doi.org/10.1111/plb.12255 PubMedCrossRefGoogle Scholar
  128. Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J (2017) A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8:14789.  https://doi.org/10.1038/ncomms14789 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhao S-Q, Hu J, Guo L-B, Qian Q, Xue H-W (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res 20(8):935–947.  https://doi.org/10.1038/cr.2010.109 PubMedCrossRefGoogle Scholar
  130. Zhao L-H, Zhou XE, Wu Z-S, Yi W, Xu Y, Li S, Xu T-H, Liu Y, Chen R-Z, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23(3):436–439.  https://doi.org/10.1038/cr.2013.19 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhao L, Tan L, Zhu Z, Xiao L, Xie D, Sun C (2015) PAY1 improves plant architecture and enhances grain yield in rice. Plant J 83(3):528–536.  https://doi.org/10.1111/tpj.12905 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406–410.  https://doi.org/10.1038/nature12878 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhou Y, Miao J, Gu H, Peng X, Leburu M, Yuan F, Gu H, Gao Y, Tao Y, Zhu J, Gong Z, Yi C, Gu M, Yang Z, Liang G (2015) Natural variations in SLG7 regulate grain shape in rice. Genetics 201(4):1591–1599.  https://doi.org/10.1534/genetics.115.181115 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18(2):442–456.  https://doi.org/10.1105/tpc.105.038455 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48(5):687–698.  https://doi.org/10.1111/j.1365-313X.2006.02916.x PubMedCrossRefGoogle Scholar
  136. Zou L-P, Sun X-H, Zhang Z-G, Liu P, Wu J-X, Tian C-J, Qiu J-L, Lu T-G (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156(3):1589–1602.  https://doi.org/10.1104/pp.111.176016 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Ann Rev Genet 48:99–118.  https://doi.org/10.1146/annurev-genet-120213-092138 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.School of Biological SciencesUniversity of TasmaniaHobartAustralia
  3. 3.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations