Skip to main content

Diagnostic Prediction Based on Gene Expression Profiles and Artificial Neural Networks

  • Chapter
  • First Online:
Soft Computing for Biological Systems

Abstract

Recent advances in scientific research point out that diagnostic prediction represents a novel paradigm because of the decreased expense and the expanded productivity of multi-omics technologies such as gene expression profiling. In order to evaluate a mammoth amount of biomarkers produced by high-throughput technologies, machine learning and predictive approaches such as artificial neural network (ANN) algorithms have widely been utilized to assess disease mechanisms and intervention outcomes. In this chapter, we first illustrated ANN algorithms for establishing biomarkers in diagnostic prediction studies. We then surveyed a variety of diagnostic prediction applications for numerous diseases and treatments with consideration of ANN algorithms and gene expression profiling. Finally, we outlined their limitations and future directions. Future work in diagnostic prediction studies promises to lead to innovative ideas related to disease prevention and drug responsiveness in light of multi-omics technologies as well as machine learning and predictive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175–185

    Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford

    Google Scholar 

  • Chen YC, Chang YC, Ke WC, Chiu HW (2015) Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: an example for non-small cell lung cancer. J Biomed Inform 56:1–7. https://doi.org/10.1016/j.jbi.2015.05.006

    Article  PubMed  Google Scholar 

  • Chou HL, Yao CT, Su SL, Lee CY, Hu KY, Terng HJ, Shih YW, Chang YT, Lu YF, Chang CW, Wahlqvist ML, Wetter T, Chu CM (2013) Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees. BMC Bioinform 14:100. https://doi.org/10.1186/1471-2105-14-100

    Article  Google Scholar 

  • Chu CM, Yao CT, Chang YT, Chou HL, Chou YC, Chen KH, Terng HJ, Huang CS, Lee CC, Su SL, Liu YC, Lin FG, Wetter T, Chang CW (2014) Gene expression profiling of colorectal tumors and normal mucosa by microarrays meta-analysis using prediction analysis of microarray, artificial neural network, classification, and regression trees. Dis Markers 2014:634123. https://doi.org/10.1155/2014/634123

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29:103­137

    Article  Google Scholar 

  • Dwivedi Y (2014) Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin Neurosci 16:43–61

    PubMed  PubMed Central  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewett R, Kijsanayothin P (2008) Tumor classification ranking from microarray data. BMC Genomics 9:S21. https://doi.org/10.1186/1471-2164-9-S2-S21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu HP, Niu ZJ, Bai YP, Tan XH (2015) Cancer classification based on gene expression using neural networks. Genet Mol Res 14:17605–17611. https://doi.org/10.4238/2015.December.21.33

    Article  CAS  PubMed  Google Scholar 

  • Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23:89–109

    Article  CAS  PubMed  Google Scholar 

  • Kung SY, Hwang JN (1998) Neural networks for intelligent multimedia processing. Proc IEEE 86:1244–1272

    Article  Google Scholar 

  • Lancashire LJ, Powe DG, Reis-Filho JS, Rakha E, Lemetre C, Weigelt B, Abdel-Fatah TM, Green AR, Mukta R, Blamey R, Paish EC, Rees RC, Ellis IO, Ball GR (2010) A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 120:83–93. https://doi.org/10.1007/s10549-009-0378-1

    Article  CAS  PubMed  Google Scholar 

  • Landset S, Khoshgoftaar TM, Richter AN, Hasanin T (2015) A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J Big Data 2:24

    Article  Google Scholar 

  • Lane HY, Tsai GE, Lin E (2012) Assessing gene-gene interactions in pharmacogenomics. Mol Diagn Ther 16:15–27. https://doi.org/10.2165/11597270-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Lin E (2012) Novel drug therapies and diagnostics for personalized medicine and nanomedicine in genome science, nanoscience, and molecular engineering. Pharm Regul Aff Open Access 1:e116

    Google Scholar 

  • Lin E, Lane HY (2015) Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics 16:555–566. https://doi.org/10.2217/pgs.15.5

    Article  CAS  PubMed  Google Scholar 

  • Lin E, Lane HY (2017) Machine learning and systems genomics approaches for multi-omics data. Biomarker Res 5:2. https://doi.org/10.1186/s40364-017-0082-y

    Article  Google Scholar 

  • Lin E, Tsai SJ (2011) Gene-gene interactions in a context of individual variability in antipsychotic drug pharmacogenomics. Curr Pharmacogenomics Pers Med 9:323–331

    Article  CAS  Google Scholar 

  • Lin E, Tsai SJ (2012) Novel diagnostics R&D for public health and personalized medicine in Taiwan: current state, challenges and opportunities. Curr Pharmacogenomics Pers Med 10:239–246

    Article  CAS  Google Scholar 

  • Lin E, Tsai SJ (2016a) Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuro-Psychopharmacol Biol Psychiatry 64:334–340. https://doi.org/10.1016/j.pnpbp.2015.02.008

    Article  CAS  Google Scholar 

  • Lin E, Tsai SJ (2016b) Genetics and suicide. In: Courtet P (ed) Understanding suicide – risk assessment, prevention, and treatment. Springer, Cham

    Google Scholar 

  • Lin E, Tsai SJ (2016c) Machine learning and predictive algorithms for personalized medicine: from physiology to treatment. In: Turnbull A (ed) Personalized medicine. Nova Science Publishers, New York

    Google Scholar 

  • Lin E, Hwang Y, Wang SC, Gu ZJ, Chen EY (2006) An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics 7:1017–1024. https://doi.org/10.2217/14622416.7.7.1017

    Article  CAS  PubMed  Google Scholar 

  • Liou YJ, Bai YM, Lin E, Chen JY, Chen TT, Hong CJ, Tsai SJ (2012) Gene-gene interactions of the INSIG1 and INSIG2 in metabolic syndrome in schizophrenic patients treated with atypical antipsychotics. Pharmacogenomics J 12:54–61. https://doi.org/10.1038/tpj.2010.74

    Article  CAS  PubMed  Google Scholar 

  • Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory (Special Issue on Quantization) IT-28:129–137

    Article  Google Scholar 

  • McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, Kerin MJ (2014) Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One 9:e87032. https://doi.org/10.1371/journal.pone.0087032

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehridehnavi A, Ziaei L (2013) Minimal gene selection for classification and diagnosis prediction based on gene expression profile. Adv Biomed Res 2:26. https://doi.org/10.4103/2277-9175.107999

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181. https://doi.org/10.1016/j.cell.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  • Pass HI, Liu Z, Wali A, Bueno R, Land S, Lott D, Siddiq F, Lonardo F, Carbone M, Draghici S (2004) Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res 10:849–859

    Article  CAS  PubMed  Google Scholar 

  • Petalidis LP, Oulas A, Backlund M, Wayland MT, Liu L, Plant K, Happerfield L, Freeman TC, Poirazi P, Collins VP (2008) Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 7:1013–1024. https://doi.org/10.1158/1535-7163.MCT-07-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Rumelhart DE, Hinton GE, William RJ (1996) Learning internal representation by error propagation. Parallel distributed processing: explorations. In: The micro-structure of cognition, Foundations, vol 1. MIT Press, Cambridge, MA

    Google Scholar 

  • Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Kitajima T, Yamanouchi Y, Iwata N, Mizukami K, Hori T, Shimoda K, Ujike H, Ozaki N, Iijima K, Takemura K, Aoshima H, Someya T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119:210–218. https://doi.org/10.1016/j.schres.2009.12.024

    Article  PubMed  Google Scholar 

  • Tong DL, Boocock DJ, Dhondalay GK, Lemetre C, Ball GR (2014) Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas. PLoS One 9:e102483. https://doi.org/10.1371/journal.pone.0102483

    Article  PubMed  PubMed Central  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N, Catchpoole D, Berthold F, Schwab M, Khan J (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 64:6883–6891. https://doi.org/10.1158/0008-5472.CAN-04-0695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere thanks to Vita Genomics, Inc. and SBIR grants (S099000280249-154) from the Department of Economic Affairs in Taiwan for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Jen Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, E., Tsai, SJ. (2018). Diagnostic Prediction Based on Gene Expression Profiles and Artificial Neural Networks. In: Purohit, H., Kalia, V., More, R. (eds) Soft Computing for Biological Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-7455-4_2

Download citation

Publish with us

Policies and ethics