Skip to main content

Turbulent Spray Combustion

  • 1840 Accesses

Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Understanding turbulence is one of the most difficult topics in science and engineering. This is because turbulent spray combustion involves many areas of physics and chemistry which accompany a variety of mathematical challenges. Defining the various length and timescales existing in turbulent flow provides a better way to understand and characterize this chaotic phenomenon. However, the degree of complexity increases when there is a strong interaction between turbulence flow and chemistry. Here, characteristic times of chemical reaction in a molecular level (chemical) and fluid-mechanic level (physical) determine which of these are more dominant. This interaction remains as one of the most important and challenging aspects of turbulent reacting spray. In the present chapter, we begin with a general discussion on turbulence. The following section covers description of key features involved in a spray combustion scenario. Concepts involving higher fidelity in description of turbulent combustion are covered by discussion of interaction of turbulence and combustion. In most actual spray combustion applications, the combustion is dominantly non-premixed. There is a minor aspect of premixed combustion too which are discussed in this chapter. New advanced combustion modes such as partially premixed combustion (PPC) and multiple injections, topics with growing interests, are introduced and discussed later. Finally, numerically simulating these aspects is a key area of combustion research. It is of utmost important to optimize the combustion system using computer-based simulations to avoid higher cost for experimentally parametric study. Reynolds-averaged Navier–Stokes (RANS) models are mostly used in commercial sector for computationally tractable simulation time. Large-eddy simulation (LES) offers a higher fidelity approach. With the advent of higher computational resources, LES approaches are becoming more popular for obtaining solutions of turbulent combustion. Aspects of both RANS and LES relevant to spray combustion scenarios are discussed. Although usually requiring very high computational power, direct numerical simulation (DNS) can provide an actual representative of many chemical and physical aspects of spray combustion such as evaporation and auto-ignition, which are discussed at the end of this chapter.

Keywords

  • Spray Combustion
  • Partially Premixed Combustion (PPC)
  • Reynolds-averaged Navier–Stokes (RANS)
  • Lift-off Length (LOL)
  • Homogeneous Charge Compression Ignition (HCCI)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   186.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   186.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16
Fig. 11.17
Fig. 11.18
Fig. 11.19
Fig. 11.20
Fig. 11.21
Fig. 11.22
Fig. 11.23
Fig. 11.24
Fig. 11.25

References

  • Afzal H, Arcoumanis C, Gavaises M, Kampanis N (1999) Internal flow in diesel injector nozzles: modelling and experiments. IMechE Pap S 492:25–44

    Google Scholar 

  • Ameen MM, Kundu P, Som S (2016) Novel tabulated combustion model approach for lifted spray flames with Large Eddy Simulations. SAE Int J Engines 9(2016-01-2194):2056–2065

    Google Scholar 

  • Bae C, Kang J (2006) The structure of a break-up zone in the transient diesel spray of a valve-covered orifice nozzle. Int J Engine Res 7(4):319–334

    CrossRef  Google Scholar 

  • Baert RSG, Frijters PJM, Somers B, Luijten CCM, de Boer W (2009) Design and operation of a high pressure, high temperature cell for HD diesel spray diagnostics: guidelines and results

    Google Scholar 

  • Bhagat M, Cung K, Johnson J, Lee S-Y, Naber J, Barros S (2013) Experimental and numerical study of water spray injection at engine-relevant conditions. SAE Technical Paper

    Google Scholar 

  • Bhattacharjee S, Haworth DC (2013) Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combust Flame 160(10):2083–2102

    CrossRef  Google Scholar 

  • Brackmann C, Nygren J, Bai X, Li Z, Bladh H, Axelsson B, Denbratt I, Koopmans L, Bengtsson P-E, Aldén M (2003) Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd: YAG laser excitation. Spectrochim Acta Part A Mol Biomol Spectrosc 59(14):3347–3356

    CrossRef  Google Scholar 

  • Broadwell JE, Lutz AE (1998) A turbulent jet chemical reaction model: NOx production in jet flames. Combust Flame 114(3):319–335

    CrossRef  Google Scholar 

  • Bruneaux G (2008) Combustion structure of free and wall-impinging diesel jets by simultaneous laser-induced fluorescence of formaldehyde, poly-aromatic hydrocarbons, and hydroxides. Int J Engine Res 9(3):249–265

    CrossRef  Google Scholar 

  • Christensen M, Hultqvist A, Johansson B (1999) Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE Technical Papers. https://doi.org/10.4271/1999-01-3679

  • Ciatti S (2015) Compression ignition engines–revolutionary technology that has civilized frontiers all over the globe from the industrial revolution into the twenty-first century. Front Mech Eng 1(5)

    Google Scholar 

  • Colin O, Benkenida A, Angelberger C (2003) 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines. Oil Gas Sci Technol 58(1):47–62

    CrossRef  Google Scholar 

  • Cung K, Bhagat M, Zhang A, Lee S.-Y. (2013) Numerical study on emission characteristics of high-pressure dimethyl ether (DME) under different engine ambient conditions. SAE Technical Papers 2. https://doi.org/10.4271/2013-01-0319

  • Cung K, Moiz A, Johnson J, Lee S-Y, Kweon CB, Montanaro A (2015a) Spray-combustion interaction mechanism of multiple-injection under diesel engine conditions. Proc Combust Inst 35(3):3061–3068. https://doi.org/10.1016/j.proci.2014.07.054

    CrossRef  Google Scholar 

  • Cung K, Moiz AA, Zhu X, Lee S-Y (2016a) Ignition and formaldehyde formation in dimethyl ether (DME) reacting spray under various EGR levels. In: Proceedings of the combustion institute, vol 36 https://doi.org/10.1016/j.proci.2016.07.054

  • Cung K, Rockstroh T, Ciatti S, Cannella W, Goldsborough SS (2016b) Parametric study of ignition and combustion characteristics from a gasoline compression ignition engine using two different reactivity fuels. In: ASME 2016 internal combustion engine fall technical conference. American Society of Mechanical Engineers, pp V001T003A011–V001T003A011

    Google Scholar 

  • Cung K, Zhang A, Lee S-Y (2015b) Ignition and formaldehyde formation in dimethyl ether spray combustion: experiment and chemical modeling. In: 9th U.S. national combustion meeting, Cincinnati, Ohio, USA

    Google Scholar 

  • Cung K, Zhu X, Moiz AA, Lee S-Y, De Ojeda W (2016b) Characteristics of formaldehyde (CH2O) formation in dimethyl ether (DME) spray combustion using PLIF imaging. SAE Int J Fuels Lubr 9(1):138–148. https://doi.org/10.4271/2016-01-0864

    CrossRef  Google Scholar 

  • Cung K (2015) Spray and combustion characteristics of dimethyl ether under various ambient conditions: an experimental and modeling study. PhD thesis, Michigan Technological University

    Google Scholar 

  • Dec JE (1997) A conceptual model of DI diesel combustion based on laser-sheet imaging*. SAE Technical Paper

    Google Scholar 

  • Dec JE (2009) Advanced compression-ignition engines—understanding the in-cylinder processes. Proc Combust Inst 32(2):2727–2742. https://doi.org/10.1016/j.proci.2008.08.008

  • Dec JE, Espey C (1998) Chemiluminescence imaging of autoignition in a DI diesel engine

    Google Scholar 

  • Dec JE, Yang Y, Dernotte J, Ji C (2015) Effects of gasoline reactivity and ethanol content on boosted, premixed and partially stratified low-temperature gasoline combustion (LTGC). SAE Int J Engines 8(3):935–955. https://doi.org/10.4271/2015-01-0813

    CrossRef  Google Scholar 

  • Dempsey AB, Curran SJ, Wagner RM (2016) A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: effects of in-cylinder fuel stratification. Int J Engine Res 1468087415621805

    Google Scholar 

  • Dierksheide U, Meyer P, Hovestadt T, Hentschel W (2002) Endoscopic 2D particle image velocimetry (PIV) flow field measurements in IC engines. Experiments in Fluids 33(6):794–800. https://doi.org/10.1007/s00348-002-0499-3

  • Donovan MT, He X, Zigler BT, Palmer TR, Wooldridge MS, Atreya A (2004) Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust Flame 137(3):351–365. https://doi.org/10.1016/j.combustflame.2004.02.006

  • Engine_Combustion_Network. http://www.sandia.gov/ECN/

  • Felsch C, Gauding M, Hasse C, Vogel S, Peters N (2009) An extended flamelet model for multiple injections in DI Diesel engines. Proc Combust Inst 32(2):2775–2783

    CrossRef  Google Scholar 

  • Golovitchev VI, Nordin N, Jarnicki R, Chomiak J (2000) 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Technical Paper

    Google Scholar 

  • Haessler H, Bockhorn H, Pfeifer C, Kuhn D (2012) Formaldehyde-LIF of dimethyl ether during auto-ignition at elevated pressures. Flow Turbul Combust 89(2):249–259. https://doi.org/10.1007/s10494-011-9374-8

    CrossRef  MATH  Google Scholar 

  • Han D, Mungal M, Zamansky V, Tyson T (1999) Prediction of NOx control by basic and advanced gas reburning using the Two-Stage Lagrangian model. Combust Flame 119(4):483–493

    CrossRef  Google Scholar 

  • Han Z, Uludogan A, Hampson GJ, Reitz RD (1996) Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine. SAE Technical Paper

    Google Scholar 

  • Hanson R, Ickes A, Wallner T (2016) Use of adaptive injection strategies to increase the full load limit of RCCI operation. J Eng Gas Turbines Power 138(10):102802

    CrossRef  Google Scholar 

  • Haworth D (2010) Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 36(2):168–259

    CrossRef  Google Scholar 

  • Higgins B, Siebers DL (2001) Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence

    Google Scholar 

  • Hiroyasu H, Arai M (1990) Structures of fuel sprays in diesel engines. SAE Technical Paper

    Google Scholar 

  • Idicheria CA, Pickett LM (2006) Formaldehyde visualization near lift-off location in a diesel jet. SAE Technical Paper

    Google Scholar 

  • Kalghatgi GT (2014) Fuel/engine interactions

    Google Scholar 

  • Kalghatgi GT, Risberg P, Ångström H-E (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion

    Google Scholar 

  • Kalghatgi GT, Risberg P, Ångström H-E (2007) Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel

    Google Scholar 

  • Karimi K (2007) Characterisation of multiple-injection diesel sprays at elevated pressures and temperatures. University of Brighton

    Google Scholar 

  • Kavuri C, Paz J, Kokjohn SL (2016) A comparison of reactivity controlled compression ignition (RCCI) and gasoline compression ignition (GCI) strategies at high load, low speed conditions. Energy Convers Manag 127:324–341. https://doi.org/10.1016/j.enconman.2016.09.026

  • Kim T, Ghandhi JB (2001) Quantitative 2-D fuel vapor concentration measurements in an evaporating diesel spray using the exciplex fluorescence method

    Google Scholar 

  • Kitamura T, Ito T, Senda J, Fujimoto H (2002) Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation. Int J Engine Res 3(4):223–248

    CrossRef  Google Scholar 

  • Klimenko AY, Bilger RW (1999) Conditional moment closure for turbulent combustion. Prog Energy Combust Sci 25(6):595–687

    CrossRef  Google Scholar 

  • Kokjohn SL, Hanson RM, Splitter DA, Reitz RD (2011) Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 12(3):209–226. https://doi.org/10.1177/1468087411401548

    CrossRef  Google Scholar 

  • Kolodziej C, Kodavasal J, Ciatti S, Som S, Shidore N, Delhom J (2015) Achieving stable engine operation of gasoline compression ignition using 87 AKI gasoline down to idle

    Google Scholar 

  • Kolodziej CP, Sellnau M, Cho K, Cleary D (2016) Operation of a gasoline direct injection compression ignition engine on naphtha and E10 gasoline fuels. SAE Int J Engines 9(2). https://doi.org/10.4271/2016-01-0759

  • Kundu P, Ameen M, Unnikrishnan U, Som S (2017) Implementation of a tabulated flamelet model for compression ignition engine applications. SAE Technical Paper

    Google Scholar 

  • Law CK (2006) Combustion physics. Cambridge University Press, ISBN

    CrossRef  Google Scholar 

  • Lillo PM, Pickett LM, Persson H, Andersson O, Kook S (2012) Diesel spray ignition detection and spatial/temporal correction. SAE Int J Engines 5(3):1330–1346. https://doi.org/10.4271/2012-01-1239

    CrossRef  Google Scholar 

  • Lu P, Zhao H, Herfatmanesh MR (2015) In-cylinder studies of high injection pressure gasoline partially premixed combustion in a single cylinder optical engine

    Google Scholar 

  • Manente V, Johansson B, Cannella W (2011) Gasoline partially premixed combustion, the future of internal combustion engines? Int J Engine Res 12(3):194–208

    CrossRef  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik 330(3):377–445

    CrossRef  MATH  Google Scholar 

  • Miers SA, Ng H, Ciatti SA, Stork K (2005) Emissions, performance, and in-cylinder combustion analysis in a light-duty diesel engine operating on a fischer-tropsch, biomass-to-liquid fuel

    Google Scholar 

  • Moiz AA (2016) Low temperature split injection spray combustion: ignition, flame stabilization and soot formation characteristics in diesel engine conditions. PhD thesis, Michigan Technological University

    Google Scholar 

  • Moiz AA, Ameen MM, Lee S-Y, Som S (2016a) Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combust Flame 173:123–131. https://doi.org/10.1016/j.combustflame.2016.08.005

    CrossRef  Google Scholar 

  • Moiz AA, Cung KD, Lee S-Y (2016b) Simultaneous Schlieren-PLIF studies for ignition and soot luminosity visualization with close-coupled high pressure double injections of n-dodecane. J Energy Res Technol. https://doi.org/10.1115/1.4035071

    Google Scholar 

  • Moiz AA, Som S, Bravo L, Lee S-Y (2015) Experimental and numerical studies on combustion model selection for split injection spray combustion. SAE Technical Papers 2015-April. https://doi.org/10.4271/2015-01-0374

  • Musculus MPB, Miles PC, Pickett LM (2013a) Conceptual models for partially premixed low-temperature diesel combustion. Prog Energy Combust Sci 39(2–3):246–283. https://doi.org/10.1016/j.pecs.2012.09.001

  • Musculus MPB, Miles PC, Pickett LM (2013b) Conceptual models for partially premixed low-temperature diesel combustion. Prog Energy Combust Sci 39(2–3):246–283. https://doi.org/10.1016/j.pecs.2012.09.001

    CrossRef  Google Scholar 

  • Nesbitt JE, Johnson SE, Pickett LM, Siebers DL, Lee S-Y, Naber JD (2011) Minor species production from lean premixed combustion and their impact on autoignition of diesel surrogates. Energy Fuels 25(3):926–936. https://doi.org/10.1021/ef101411f

    CrossRef  Google Scholar 

  • Noehre C, Andersson M, Johansson B, Hultqvist A (2006) Characterization of partially premixed combustion

    Google Scholar 

  • Oijen Jv, Goey LD (2000) Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci Technol 161(1):113–137

    CrossRef  Google Scholar 

  • Pei Y, Hawkes ER, Kook S (2013) Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proc Combust Inst 34(2):3039–3047

    CrossRef  Google Scholar 

  • Pei Y, Hawkes ER, Kook S, Goldin GM, Lu T (2015a) Modelling n-dodecane spray and combustion with the transported probability density function method. Combust Flame 162(5):2006–2019. https://doi.org/10.1016/j.combustflame.2014.12.019

  • Pei Y, Som S, Kundu P, Goldin GM (2015b) Large eddy simulation of a reacting spray flame under diesel engine conditions. SAE Technical Paper

    Google Scholar 

  • Pei Y, Som S, Pomraning E, Senecal PK, Skeen SA, Manin J, Pickett LM (2015c) Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combust Flame 162(12):4442–4455. https://doi.org/10.1016/j.combustflame.2015.08.010

  • Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10(3):319–339

    CrossRef  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge university press

    Google Scholar 

  • Pickett LM, Kook S, Williams TC (2009) Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging. SAE Int J Engines 2(1):439–459. https://doi.org/10.4271/2009-01-0658

    CrossRef  Google Scholar 

  • Pickett LM, Manin J, Genzale CL, Siebers DL, Musculus MPB, Idicheria CA (2011) Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction. SAE Int J Engines 4(1):764–799. https://doi.org/10.4271/2011-01-0686

    CrossRef  Google Scholar 

  • Pickett LM, Siebers DL, Idicheria CA (2005) Relationship between ignition processes and the lift-off length of diesel fuel jets. SAE Technical Paper

    Google Scholar 

  • Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Pitsch H, Barths H, Peters N (1996) Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach. SAE Technical Paper

    Google Scholar 

  • Pitsch H, Steiner H (2000) Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc Combust Inst 28(1):41–49

    CrossRef  Google Scholar 

  • Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11(2):119–192

    CrossRef  Google Scholar 

  • Pope SB (2001) Turbulent flows. IOP Publishing

    Google Scholar 

  • Powell C, Ciatti S, Cheong S, Liu J, Wang J (2004a) X-ray characterization of diesel sprays and the effects of nozzle geometry. In: Proceedings of the diesel engine emission reduction conference

    Google Scholar 

  • Powell CF, Ciatti SA, Cheong S-K, Liu J, Wang J (2004b) X-ray absorption measurements of diesel sprays and the effects of nozzle geometry

    Google Scholar 

  • Product Guide AVL Thermovision advanced, (2004)

    Google Scholar 

  • Reitz RD, Duraisamy G (2015) Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci 46:12–71. https://doi.org/10.1016/j.pecs.2014.05.003

  • Särner G, Richter M, Aldén M, Hildingsson L, Hultqvist A, Johansson B (2005) Simultaneous PLIF measurements for visualization of formaldehyde- and fuel- distributions in a DI HCCI engine

    Google Scholar 

  • Sellnau M, Foster M, Moore W, Sinnamon J, Hoyer K, Klemm W (2016) Second generation GDCI multi-cylinder engine for high fuel efficiency and US Tier 3 emissions. SAE Int J Engines 9(2):1002–1020. https://doi.org/10.4271/2016-01-0760

    CrossRef  Google Scholar 

  • Senecal P, Mitra S, Pomraning E, Xue Q, Som S, Banerjee S, Hu B, Liu K, Rajamohan D, Deur J (2014) Modeling fuel spray vapor distribution with large eddy simulation of multiple realizations. In: ASME 2014 internal combustion engine division fall technical conference. American Society of Mechanical Engineers, pp V002T006A002–V002T006A002

    Google Scholar 

  • Settles GS (2012) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer Science & Business Media

    Google Scholar 

  • Siebers DL (1998) Liquid-phase fuel penetration in diesel sprays

    Google Scholar 

  • Siebers DL (1999) Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization. SAE Technical Paper

    Google Scholar 

  • Siebers DL, Higgins B, Pickett L (2002) Flame lift-off on direct-injection diesel fuel jets: oxygen concentration effects

    Google Scholar 

  • Singh S, Reitz RD, Musculus MPB (2006) Comparison of the characteristic time (CTC), representative interactive flamelet (RIF), and direct integration with detailed chemistry combustion models against optical diagnostic data for multi-mode combustion in a heavy-duty DI diesel engine

    Google Scholar 

  • Skeen S, Manin J, Pickett LM (2015a) Visualization of ignition processes in high-pressure sprays with multiple injections of n-dodecane. SAE Int J Engines 8(2):696–715. https://doi.org/10.4271/2015-01-0799

    CrossRef  Google Scholar 

  • Skeen SA, Manin J, Pickett LM (2015b) Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proc Combust Inst 35(3):3167–3174. https://doi.org/10.1016/j.proci.2014.06.040

  • Som S, Longman DE, Luo Z, Plomer M, Lu T, Senecal PK, Pomraning E (2012) Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and large eddy simulation turbulence model. J Energy Res Technol 134(3):032204

    CrossRef  Google Scholar 

  • Tanov S, Collin R, Johansson B, Tuner M (2014) Combustion stratification with partially premixed combustion, PPC, using NVO and split injection in a LD—diesel engine. https://doi.org/10.4271/2014-01-2677

  • Tanov S, Wang Z, Wang H, Richter M, Johansson B (2015) Effects of injection strategies on fluid flow and turbulence in partially premixed combustion (PPC) in a light duty engine

    Google Scholar 

  • Tap F, Veynante D (2005) Simulation of flame lift-off on a diesel jet using a generalized flame surface density modeling approach. Proc Combust Inst 30(1):919–926

    CrossRef  Google Scholar 

  • Vishwanathan G, Reitz RD (2009) Modeling soot formation using reduced polycyclic aromatic hydrocarbon chemistry in n-heptane lifted flames with application to low temperature combustion. J Eng Gas Turbines Power 131(3):032801

    CrossRef  Google Scholar 

  • Wang H, Jiao Q, Yao M, Yang B, Qiu L, Reitz RD (2013) Development of an n-heptane/toluene/polyaromatic hydrocarbon mechanism and its application for combustion and soot prediction. Int J Engine Res 14(5):434–451. https://doi.org/10.1177/1468087412471056

  • Wang X, Huang Z, Zhang W, Kuti OA, Nishida K (2011) Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Appl Energy 88(5):1620–1628

    CrossRef  Google Scholar 

  • Zeng W, Xu M, Zhang G, Zhang Y, Cleary DJ (2012) Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 95:287–297

    CrossRef  Google Scholar 

  • Zhang A, Cung K, Lee S-Y, Naber J, Huberts G, Czekala M, Qu Q (2013) The impact of spark discharge pattern on flame initiation in a turbulent lean and dilute mixture in a pressurized. https://doi.org/10.4271/2013-01-1627

  • Zhao H, Ladommatos N (2001) Engine combustion instrumentation and diagnostics, vol 842. Society of Automotive Engineers, Warrendale, PA

    Google Scholar 

  • Zhu J, Kuti OA, Nishida K (2013) An investigation of the effects of fuel injection pressure, ambient gas density and nozzle hole diameter on surrounding gas flow of a single diesel spray by the laser-induced fluorescence–particle image velocimetry technique. Int J Engine Res 14(6):630–645

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Young Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, SY., Moiz, A.A., Cung, K.D. (2018). Turbulent Spray Combustion. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplets and Sprays . Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7449-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7449-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7448-6

  • Online ISBN: 978-981-10-7449-3

  • eBook Packages: EngineeringEngineering (R0)