Skip to main content

Plant Biosynthetic Engineering Through Transcription Regulation: An Insight into Molecular Mechanisms During Environmental Stress

  • Chapter
  • First Online:
Biosynthetic Technology and Environmental Challenges

Abstract

Transcription is not only essential for the synthesis of coding and non-coding RNA, but also extremely significant in regulating gene expression with the coordination of several protein complexes in development, differentiation, phenotype, metabolism, exposure to different challenging environmental conditions, and many other cellular pathways. Further extensions of these studies in plant biology will be very helpful in dealing and maintaining a balance between challenging environmental stress, plant resistance, plant productivity, and yield. Different plant secondary metabolites are induced by various developmental, hormonal, and environmental cues and facilitate the plant to fight and cope up with stress conditions. Interestingly, recent advances suggest that the biosynthesis pathway of secondary metabolites is tightly regulated at the transcriptional stages. Keeping in view studying both the molecular mechanisms at a single platform, the aim of this chapter is to understand plant secondary metabolite biosynthetic pathways at the transcriptional level under unfavorable or stressful environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Google Scholar 

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868. doi:https://doi.org/10.1105/tpc.9.10.18599/10/1859 [pii]

  • Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16(3):155–166. doi:https://doi.org/10.1038/nrm3951

  • Backstrom S, Elfving N, Nilsson R, Wingsle G, Bjorklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26(5):717–729. doi:S1097-2765(07)00288-2 [pii] https://doi.org/10.1016/j.molcel.2007.05.007

  • Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26(37):5329–5340. doi:1210603 [pii] https://doi.org/10.1038/sj.onc.1210603

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Google Scholar 

  • Baugh LR, Demodena J, Sternberg PW (2009) RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 324(5923):92–94. doi:https://doi.org/10.1126/science.1169628

  • Baumann M, Pontiller J, Ernst W (2010) Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: an overview. Mol Biotechnol 45(3):241–247. doi:https://doi.org/10.1007/s12033-010-9265-6

  • Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18(11):2893–2903. doi:tpc.106.043489 [pii] https://doi.org/10.1105/tpc.106.043489

  • Bertrand C, Benhamed M, Li YF, Ayadi M, Lemonnier G, Renou JP, Delarue M, Zhou DX (2005) Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J Biol Chem 280(2):1465–1473. doi:M409000200 [pii] https://doi.org/10.1074/jbc.M409000200

  • Bieluszewski T, Galganski L, Sura W, Bieluszewska A, Abram M, Ludwikow A, Ziolkowski PA, Sadowski J (2015) AtEAF1 is a potential platform protein for Arabidopsis NuA4 acetyltransferase complex. BMC Plant Biol 15:75. doi:https://doi.org/10.1186/s12870-015-0461-1

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58. doi:https://doi.org/10.1002/biot.201200120

  • Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK, Seals LA, Weng JK, Stout J, Chapple C (2012) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem 287(8):5434–5445. doi:https://doi.org/10.1074/jbc.M111.312298

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18(13):1577–1591. doi:https://doi.org/10.1101/gad.297704 18/13/1577 [pii]

  • Boyce JM, Knight H, Deyholos M, Openshaw MR, Galbraith DW, Warren G, Knight MR (2003) The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J 34(4):395–406

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Busk PK, Jensen AB, Pages M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11(6):1285–1295

    Google Scholar 

  • Campi M, D’Andrea L, Emiliani J, Casati P (2012) Participation of chromatin-remodeling proteins in the repair of ultraviolet-B-damaged DNA. Plant Physiol 158(2):981–995. doi:https://doi.org/10.1104/pp.111.191452

  • Chaturvedi CP, Lodhi N, Ansari SA, Tiwari S, Srivastava R, Sawant SV, Tuli R (2007) Mutated TATA-box/TATA binding protein complementation system for regulated transgene expression in tobacco. Plant J 50(5):917–925. doi:https://doi.org/10.1111/j.1365-313X.2007.03089.x

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. doi:https://doi.org/10.1093/aob/mcn125

  • Compant S, van der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73(2):197–214. doi:https://doi.org/10.1111/j.1574-6941.2010.00900.x

  • Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 Ã…ngstrom resolution. Science 292(5523):1863–1876

    Google Scholar 

  • Daulny A, Geng F, Muratani M, Geisinger JM, Salghetti SE, Tansey WP (2008) Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc Natl Acad Sci U S A 105(50):19649–19654. doi:https://doi.org/10.1073/pnas.0809372105

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15(9):2181–2191

    Google Scholar 

  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet TIG 23(12):614–622. doi:https://doi.org/10.1016/j.tig.2007.09.001

  • Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, Jiang YW, Li Y, Kornberg RD, Asturias FJ (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97(26):14307–14310. doi:https://doi.org/10.1073/pnas.260489497

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763. doi:1661 [pii]

    Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38(4):551–564

    Google Scholar 

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brannstrom K, Muller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O, Bjorklund S (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci U S A 108(20):8245–8250. doi:1002981108 [pii] https://doi.org/10.1073/pnas.1002981108

  • Flanagan PM, Kelleher RJ, 3rd, Sayre MH, Tschochner H, Kornberg RD (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350(6317):436–438. doi:https://doi.org/10.1038/350436a0

  • Furumoto T, Tamada Y, Izumida A, Nakatani H, Hata S, Izui K (2005) Abundant expression in vascular tissue of plant TAF10, an orthologous gene for TATA box-binding protein-associated factor 10, in Flaveria trinervia and abnormal morphology of Arabidopsis thaliana transformants on its overexpression. Plant Cell Physiol 46(1):108–117. doi:pci006 [pii] https://doi.org/10.1093/pcp/pci006

  • Gao X, Ren F, Lu YT (2006) The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation. Plant Cell Physiol 47(9):1285–1294. doi:pcj099 [pii] https://doi.org/10.1093/pcp/pcj099

  • Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3(4):563–571

    Google Scholar 

  • Gurley WB, O’Grady K, Czarnecka-Verner E, Lawit SJ (2007) General Transcription Factors and the Core Promoter: Ancient Roots. In: Annual plant reviews volume 29: regulation of transcription in plants. Blackwell Publishing Ltd, pp 1–27. doi:https://doi.org/10.1002/9780470988886.ch1

  • Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B (1998) Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36(5):741–754

    Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43(1):136–140

    Google Scholar 

  • Hemsley PA, Hurst CH, Kaliyadasa E, Lamb R, Knight MR, De Cothi EA, Steele JF, Knight H (2014) The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell 26(1):465–484. doi:https://doi.org/10.1105/tpc.113.117796

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300. doi:gkc003 [pii]

    Google Scholar 

  • Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4):573–585. doi:S1097276504000875 [pii]

    Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247(4):391–398

    Google Scholar 

  • Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339(2):225–229. doi:S0012-1606(09)01116-6 [pii] https://doi.org/10.1016/j.ydbio.2009.08.009

  • Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233(4):749–762. doi:https://doi.org/10.1007/s00425-010-1337-0

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291. doi:https://doi.org/10.1038/7036

  • Kelleher RJ, 3rd, Flanagan PM, Kornberg RD (1990) A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61(7):1209–1215. doi:0092-8674(90)90685-8 [pii]

    Google Scholar 

  • Kiran K, Ansari SA, Srivastava R, Lodhi N, Chaturvedi CP, Sawant SV, Tuli R (2006) The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant physiol 142(1):364–376

    Google Scholar 

  • Kubo M, Furuta K, Demura T, Fukuda H, Liu YG, Shibata D, Kakimoto T (2011) The CKH1/EER4 gene encoding a TAF12-like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana. Plant Cell Physiol 52(4):629–637. doi:pcr021 [pii] https://doi.org/10.1093/pcp/pcr021

  • Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM (2005) The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth. Dev Biol 285(1):91–100. doi:S0012-1606(05)00398-2 [pii] https://doi.org/10.1016/j.ydbio.2005.06.006

  • Lago C, Clerici E, Mizzi L, Colombo L, Kater MM (2004) TBP-associated factors in Arabidopsis. Gene 342(2):231–241. doi:S0378-1119(04)00515-3 [pii] https://doi.org/10.1016/j.gene.2004.08.023

  • Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405(6787):701–704. doi:https://doi.org/10.1038/35015104

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Google Scholar 

  • Liu J, Osbourn A, Ma P (2015) MYB Transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8(5):689–708. doi:https://doi.org/10.1016/j.molp.2015.03.012

  • Liu S, Tao Y (2013) Interplay between chromatin modifications and paused RNA polymerase II in dynamic transition between stalled and activated genes. Biolo Rev (Cambridge Philosophical Society) 88(1):40–48. doi:https://doi.org/10.1111/j.1469-185X.2012.00237.x

  • Liu W, Stewart CN Jr (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44. doi:https://doi.org/10.1016/j.copbio.2015.10.001

  • Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci U S A 89(19):9230–9234

    Google Scholar 

  • Lodhi N, Ranjan A, Singh M, Srivastava R, Singh SP, Chaturvedi CP, Ansari SA, Sawant SV, Tuli R (2008) Interactions between upstream and core promoter sequences determine gene expression and nucleosome positioning in tobacco PR-1a promoter. Biochimica et Biophysica Acta (BBA) Gene Regul Mech 1779(10):634–644

    Google Scholar 

  • Lu CA, Ho TH, Ho SL, Yu SM (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14(8):1963–1980

    Google Scholar 

  • Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 7:29–59. doi:https://doi.org/10.1146/annurev.genom.7.080505.115623

  • Mathur S, Vyas S, Kapoor S, Tyagi AK (2011) The mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol 157(4):1609–1627. doi:pp. 111.188300 [pii] https://doi.org/10.1104/pp.111.188300

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096. doi:https://doi.org/10.1104/pp.104.058032

  • Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463. doi:https://doi.org/10.1093/emboj/18.16.4455

  • Mertens J, Pollier J, Vanden Bossche R, Lopez-Vidriero I, Franco-Zorrilla JM, Goossens A (2016) The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiol 170(1):194–210. doi:https://doi.org/10.1104/pp.15.01645

  • Miguel A, Monton F, Li T, Gomez-Herreros F, Chavez S, Alepuz P, Perez-Ortin JE (2013) External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochim Biophys Acta 1829(11):1248–1255. doi:https://doi.org/10.1016/j.bbagrm.2013.09.008

  • Mishra S, Phukan UJ, Tripathi V, Singh DK, Luqman S, Shukla RK (2015) PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol Biol 89(1–2):173-186. doi:https://doi.org/10.1007/s11103-015-0361-7

  • Mougiou N, Poulios S, Kaldis A, Vlachonasios K (2012) Arabidopsis thaliana TBP-associated factor 5 is essential for plant growth and development. Mol Breed 30(1):355–366. doi:https://doi.org/10.1007/s11032-011-9626-2

  • Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042. doi:https://doi.org/10.1038/nature07747

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279(53):55355–55361. doi:M409674200 [pii] https://doi.org/10.1074/jbc.M409674200

  • Nordin K, Vahala T, Palva ET (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 21(4):641–653

    Google Scholar 

  • Ohme-Takagi M, Shinshi H (1990) Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol 15(6):941–946

    Google Scholar 

  • Palm CJ, Costa MA, An G, Ryan CA (1990) Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato. Proc Natl Acad Sci U S A 87(2):603–607

    Google Scholar 

  • Pandey V, Srivastava R, Akhtar N, Mishra J, Mishra P, Verma PC (2016) Expression of Withania somnifera steroidal glucosyltransferase gene enhances withanolide content in hairy roots. Plant Mol Biol Reporter 34 (3):681–689

    Google Scholar 

  • Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 1829(11):1236–1247. doi:https://doi.org/10.1016/j.bbagrm.2013.09.006

  • Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176(1):5–16. doi:http://dx.doi.org/10.1016/j.anifeedsci.2012.07.002

  • Peremarti A, Twyman RM, Gomez-Galera S, Naqvi S, Farre G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73(4–5):363–378. doi:https://doi.org/10.1007/s11103-010-9628-1

  • Poss ZC, Ebmeier CC, Taatjes DJ (2013) The mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 48(6):575–608. doi:https://doi.org/10.3109/10409238.2013.840259

  • Priest HD, Filichkin SA, Mockler TC (2009) Cis-regulatory elements in plant cell signaling. Curr Opin Plant Biol 12(5):643–649. doi:S1369-5266(09)00094-6 [pii] https://doi.org/10.1016/j.pbi.2009.07.016

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Sig Behav 6(11):1720–1731. doi:https://doi.org/10.4161/psb.6.11.17613

  • Ranjan A, Ansari SA, Srivastava R, Mantri S, Asif MH, Sawant SV, Tuli R (2009) A T9G mutation in the prototype TATA-box TCACTATATATAG determines nucleosome formation and synergy with upstream activator sequences in plant promoters. Plant physiol 151(4):2174–2186

    Google Scholar 

  • Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231(2):226–232

    Google Scholar 

  • Robles LM, Wampole JS, Christians MJ, Larsen PB (2007) Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. J Exp Bot 58(10):2627–2639. doi:erm080 [pii] https://doi.org/10.1093/jxb/erm080

  • Saher S, Fernández-García N, Piqueras A, Hellín E, Olmos E (2005) Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress? Plant Physiol Biochem 43(6):573–582. doi:http://dx.doi.org/10.1016/j.plaphy.2005.05.006

  • Salinas J, Oeda K, Chua NH (1992) Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell 4(12):1485–1493. doi:https://doi.org/10.1105/tpc.4.12.1485 4/12/1485 [pii]

  • Samanta S, Thakur JK (2015) Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Front Plant Sci 6:757. doi:https://doi.org/10.3389/fpls.2015.00757

  • Sapountzi V, Cote J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 68(7):1147–1156. doi:https://doi.org/10.1007/s00018-010-0599-9

  • Schroder S, Herker E, Itzen F, He D, Thomas S, Gilchrist DA, Kaehlcke K, Cho S, Pollard KS, Capra JA, Schnolzer M, Cole PA, Geyer M, Bruneau BG, Adelman K, Ott M (2013) Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol Cell 52(3):314–324. doi:https://doi.org/10.1016/j.molcel.2013.10.009

  • Shandilya J, Roberts SG (2012) The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim Biophys Acta 1819(5):391–400. doi:https://doi.org/10.1016/j.bbagrm.2012.01.010

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33(2):259–270. doi:1624 [pii]

    Google Scholar 

  • Sims RJ, 3rd, Rojas LA, Beck D, Bonasio R, Schuller R, Drury WJ, 3rd, Eick D, Reinberg D (2011) The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332(6025):99–103. doi:https://doi.org/10.1126/science.1202663

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479. doi:https://doi.org/10.1146/annurev.biochem.72.121801.161520 121801.161520 [pii]

  • Srivastava R, Ahn SH (2015) Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 33(6, Part 1):856–872. doi:https://doi.org/10.1016/j.biotechadv.2015.07.008

  • Srivastava R, Rai KM, Pandey B, Singh SP, Sawant SV (2015) Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex in plants: genome wide identification, evolutionary conservation and functional determination. PLOS ONE 10 (8):e0134709. doi:https://doi.org/10.1371/journal.pone.0134709

  • Srivastava R, Rai KM, Srivastava M, Kumar V, Pandey B, Singh SP, Bag SK, Singh BD, Tuli R, Sawant SV (2014a) Distinct role of core promoter architecture in regulation of light-mediated responses in plant genes. Mol Plant 7(4):626–641. doi:https://doi.org/10.1093/mp/sst146

  • Srivastava R, Singh UM, Dubey NK (2016) Histone modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification. J Biol Sci Med 2(1):45–54

    Google Scholar 

  • Srivastava R, Srivastava R, Singh UM (2014b) Understanding the patterns of gene expression during climate change. In: Climate change effect on crop productivity. CRC Press, Taylor & Francis Group, Print ISBN: 978–1-4822-2920-2 eBook ISBN: 978-1-4822-2921-9 DOI:10.1201/b17684-14, pp 279-328

    Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29(7):1524–1533

    Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677. doi:https://doi.org/10.1111/j.1365-313X.2007.03078.x

  • Strompen G, Gruner R, Pfitzner UM (1998) An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol Biol 37(5):871–883

    Google Scholar 

  • Suzuki M, Ketterling MG, McCarty DR (2005) Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis. Plant Physiol 139(1):437–447. doi:pp. 104.058412 [pii] https://doi.org/10.1104/pp.104.058412

  • Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K (2007) Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana. Plant Cell Physiol 48(1):134–146. doi:pcl048 [pii] https://doi.org/10.1093/pcp/pcl048

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132. doi:https://doi.org/10.1016/j.copbio.2016.04.012

  • Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. International J Plant Sci 164(S3):S93-S102

    Google Scholar 

  • Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41(3):105–178. doi:https://doi.org/10.1080/10409230600648736

  • Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ (2014) Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157(6):1430–1444. doi:https://doi.org/10.1016/j.cell.2014.05.015

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137(1):317–327. doi:pp. 104.045658 [pii] https://doi.org/10.1104/pp.104.045658

  • Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012) Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLoS One 7(8):e42648

    Google Scholar 

  • Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29(2):223–229. doi:https://doi.org/10.1016/j.biotechadv.2010.11.006

  • van Dijk EL, Chen CL, d’Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, Nicolas A, Thermes C, Morillon A (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117. doi:https://doi.org/10.1038/nature10118

  • Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12(3):118–124. doi:https://doi.org/10.1016/j.tplants.2007.01.002

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15(3):626–638

    Google Scholar 

  • Waterworth WM, Drury GE, Blundell-Hunter G, West CE (2015) Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte. Plant J 84(3):545–557. doi:https://doi.org/10.1111/tpj.13020

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135(1):507–515. doi:https://doi.org/10.1104/pp.104.038612

  • Xue GP (2002) Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res 30(15):e77

    Google Scholar 

  • Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolissm. J Integr Plant Biol 54(10):703–712. doi:https://doi.org/10.1111/j.1744-7909.2012.01161.x

  • Yang Y, Li L, Qu LJ (2016) Plant Mediator complex and its critical functions in transcription regulation. J Integr Plant Biol 58(2):106–118. doi:https://doi.org/10.1111/jipb.12377

  • Yang Y, Ou B, Zhang J, Si W, Gu H, Qin G, Qu LJ (2014) The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. Plant J 77(6):838–851. doi:https://doi.org/10.1111/tpj.12440

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5(2):353–365. doi:https://doi.org/10.1093/mp/ssr087

  • Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43(2):238–261. doi:https://doi.org/10.1080/1040841X.2016.1201041

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134(4):1500–1513. doi:https://doi.org/10.1104/pp.103.034967 pp.103.034967 [pii]

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. doi:https://doi.org/10.1016/j.biotechadv.2005.01.003

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16(4):227–233. doi:https://doi.org/10.1016/j.tplants.2010.12.005

  • Zhong R, Lee C, Ye ZH (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152(2):1044–1055. doi:https://doi.org/10.1104/pp.109.148270

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R., Rai, K.M., Srivastava, R. (2018). Plant Biosynthetic Engineering Through Transcription Regulation: An Insight into Molecular Mechanisms During Environmental Stress. In: Varjani, S., Parameswaran, B., Kumar, S., Khare, S. (eds) Biosynthetic Technology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7434-9_4

Download citation

Publish with us

Policies and ethics