Skip to main content

Advances and Tools in Engineering Yeast for Pharmaceutical Production

  • Chapter
  • First Online:
Book cover Biosynthetic Technology and Environmental Challenges

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Production of recombinant pharmaceutical protein is a multibillion-dollar industry and plays a crucial role in treatment of many diseases. Among the several potent microbial production systems, yeast offers several advantages in production of pharmaceutically important proteins due to its unicellular nature, easy gene manipulation, cost-effectiveness and fast growth and incorporates post-translational modifications in heterologous proteins. Saccharomyces cerevisiae is the widely used heterologous host for the production of medically important proteins and drugs; however, several non-conventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica are also gaining much attention as alternative heterologous hosts for the industrial production of therapeutic proteins. In this chapter, most recent advances in glycoengineering of yeast for successful therapeutic pharmaceutical production, current progress in humanization of yeast and various interventions in the secretory mechanisms and pathways in yeast for the improvement of the production of pharmaceutical proteins are overviewed. In addition, emerging genetic, omics, systems and synthetic biology tools and other technologies to enhance the efficiency of yeast pharmaceutical proteins are precisely discussed. The use of synthetic biology tools in yeast for the production of pharmaceuticals is clearly entering a new phase right now. Combination of yeast systems biology data with synthetic biology will open new vistas to better production, improved glycosylation and secretory mechanism. The application of currently available synthetic biology tools like CRISPR/Cas9 in yeast pathway engineering is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Environ Microbiol 98:5301–5317

    Google Scholar 

  • Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, Ito H, Kobayashi K, Hirabayashi J, Jigami Y, Narimatsu H (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Nat Acad Sci USA 105(9):3232–3237

    Article  Google Scholar 

  • Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27:315–327

    Article  Google Scholar 

  • Baeshen NA, Baeshe MN, Sheikh A, Bora RS, Ahmed M, Ramadan HI, Saini K, Redwan EM (2014) Cell factories for insulin production. Microb Cell Fact 13:141

    Article  Google Scholar 

  • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N (2015) Homologyintegrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–594

    Article  Google Scholar 

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Stud Proline Peptides Conformational Probes Biochem J 209:331–336

    Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson B, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  Google Scholar 

  • Bretthauer RK (2003) Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol 21:459–462

    Article  Google Scholar 

  • Brophy JAN, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520

    Article  Google Scholar 

  • Burda P, Aebi M (1998) The ALG10 locus of Saccharomyces cerevisiae encodes the alpha-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8:455–462

    Article  Google Scholar 

  • Camirand A, Heysen A, Grondin B, Herscovics A (1991) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing alpha-mannosidase. J Biol Chem 266:15120–15127

    Google Scholar 

  • Carrera J, Jaramillo A (2013) Automated design of bacterial genome sequences. BMC Syst Biol 7:108

    Google Scholar 

  • Caspeta L, Castillo T, Nielsen J (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:184

    Article  Google Scholar 

  • Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:0018

    Google Scholar 

  • Cho EY, Cheon SA, Kim H, Choo J, Lee DJ, Ryu HM, Rhee SK, Chung BH, Kim JY, Kang HA (2010) Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae Biotechnol. 149(1–2):1–7

    Google Scholar 

  • Chou C, Chang W, Chiu C, Huang C, Huang H (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37:W129–W134

    Article  Google Scholar 

  • Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12:327–340

    Article  Google Scholar 

  • Chung BH, Park KS (1998) Simple approach to reducing proteolysis during the secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol Bioeng 57:245–249

    Article  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR/Cas systems Science 339:819–823

    Google Scholar 

  • Conibear E, Stevens TH (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1404:211–230

    Article  Google Scholar 

  • Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38:W144–W149

    Article  Google Scholar 

  • De Pourcq K, Vervecken W, Dewerte I, Valevska A, Van Hecke A, Callewaert N (2012a) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb Cell Fact 11:53

    Article  Google Scholar 

  • De Pourcq K, Tiels P, Van Hecke A, Geysens S, Vervecken W, Callewaert N (2012b) Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS ONE 7(6):e39976

    Article  Google Scholar 

  • De Pourcq K, Vervecken W, Dewerte I et al (2012c) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb Cell Fact 11:53

    Article  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber- Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  Google Scholar 

  • Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts Nature 430:35–44

    Google Scholar 

  • Durante Rodríguez G, Mancheño JM, Díaz E, Carmona M (2016) Refactoring the λ phage lytic/lysogenic decision with a synthetic regulator. Microbiol Open 5:575–581

    Google Scholar 

  • Ecker M, Mrsa V, Hagen I, Deutzmann R, Strahl S, Tanner W (2003) O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep 4:628–632

    Article  Google Scholar 

  • Eiden-Plach A, Zagorc T, Heintel T, Carius Y, Breinig F, Schmitt MJ (2004) Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Appl Environ Microbiol 70:961–966

    Article  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  Google Scholar 

  • Endy D, KnightJr TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  Google Scholar 

  • Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, de Laureto PP, Nikolaev Y, Oliveira AP, Picotti P (2014) Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 32:1036–1044

    Article  Google Scholar 

  • Fidan O, Zhan J (2015) Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv 5:86665

    Article  Google Scholar 

  • Finnis CJA, Payne T, Hay J et al (2010) High-level production of animal free recombinant transferrin from Saccharomyces cerevisiae. Microb Cell Fact 9:87

    Article  Google Scholar 

  • Fuller RS, Brake AJ, Thorner J (1989) Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 246:482–486

    Article  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth 6:343–345

    Article  Google Scholar 

  • Giga-Hama Y (1997) Fission yeast Schizosaccharomyces pombe: an attractive host for heterologous protein production. In: Giga- Hama Y, Kumagai H (eds) Foreign gene expression in fission yeast Schizosaccharomyces pombe. Springer, Berlin, pp 3–28

    Chapter  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:547–563

    Article  Google Scholar 

  • Gonzalez-Lopez CI, Szabo R, Blanchin-Roland S, Gaillardin C (2002) Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica. Genetics 160:417–427

    Google Scholar 

  • Goodman M (2009) Market watch: sales of biologics to show robust growth through to 2013. Nat Rev Drug Discovery 8:837

    Article  Google Scholar 

  • Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact 9:49–60

    Article  Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Curr Opin Biotechnol 18:387–392

    Article  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443

    Google Scholar 

  • Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23(10):1192–1203

    Article  Google Scholar 

  • Harmsen M, Bruyne M, Raué H, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46:365–370

    Article  Google Scholar 

  • Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM et al (2015) Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems 1:1–9

    Article  Google Scholar 

  • Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Researh. 12:491–510

    Article  Google Scholar 

  • Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010a) Enhanced protein secretion from multiproteasedeficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85:667–677

    Article  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010b) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  Google Scholar 

  • Iwaki T, Hosomi A, Tokudomi S, Kusunoki Y, Fujita Y, Giga-Hama Y, Tanaka N, Takegawa K (2006) Vacuolar protein sorting receptor in Schizosaccharomyces pombe. Microbiology 152:1523–1532

    Article  Google Scholar 

  • Jiang M, Stephanopoulos G, Pfeifer BA (2012) Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 94:841–849

    Article  Google Scholar 

  • Jønson L, Rehfeld JF, Johnsen AH (2004) Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. Eur J Biochem 271:4788–4797

    Article  Google Scholar 

  • Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  Google Scholar 

  • Kakule TB, Lin Z, Schmidt EW (2014) Combinatorialization of fungal polyketide synthase—peptide synthetase hybrid proteins. J Am Soc 136:17882–17890

    Google Scholar 

  • Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopaedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  Google Scholar 

  • Kang HA, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK (2000) Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:575–582

    Article  Google Scholar 

  • Kauffman K, Pridgen E, Fr D, Dhurjati P, Robinson A (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog 18:942–950

    Article  Google Scholar 

  • Kida Y, Morimoto F, Sakaguchi M (2007) Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis. J Cell Biol 179:1441–1452

    Article  Google Scholar 

  • Kida Y, Morimoto F, Sakaguchi M (2009) Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284:2861–2866

    Article  Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2014) FEMS Yeast Res 15:1–16

    Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16

    Article  Google Scholar 

  • King ZA, Lloyd CJ, Feist AM, Palsson BO (2015) Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol 35:23–29

    Article  Google Scholar 

  • Komeda T, Sakai Y, Kato N, Kondo K (2002) Construction of protease-deficient Candida boidinii strains useful for recombinant protein production: cloning and disruption of proteinase A gene (PEP4) and proteinase B gene (PRBI). Biosci Biotechnol Biochem 66:628–663

    Article  Google Scholar 

  • Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Meth 11:499–507

    Article  Google Scholar 

  • Lee JW, Kim TY, Jang Y, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29:370–378

    Article  Google Scholar 

  • Lepenies B, Seeberger PH (2014) Simply better glycoproteins. Nat Biotechnol 32:443–445

    Article  Google Scholar 

  • Liu L, Redden H, Alper HS (2013) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24(6):1023–30

    Google Scholar 

  • Madhavan A, Sukumaran RK (2016) Secreted expression of an active human interferon—beta (HuIFNβ) in Kluyveromyces lactis. Eng Life Sci 16:379–385

    Article  Google Scholar 

  • Martinez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23:965–971

    Article  Google Scholar 

  • Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358

    Article  Google Scholar 

  • Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC (2009) Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS ONE 4:e7979

    Article  Google Scholar 

  • Medema MH et al (2011) Anti SMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    Article  Google Scholar 

  • Medema MH, Raaphorst R, Takano E Breitling R. (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202

    Google Scholar 

  • Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA (2014) A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput Biol 10:e1004016

    Article  Google Scholar 

  • Müller U, van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans A, Townsend CA, Sonke T, Bovenberg R, Wubbolts M (2006) Metabolic engineering of the E. coli l-phenylalanine pathway for the production of d-phenylglycine (d-Phg). Metab Eng 8:196–208

    Article  Google Scholar 

  • Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634

    Article  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  Google Scholar 

  • Nielsen J (2013) Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4(4):207–211

    Article  Google Scholar 

  • Osterlund T, Bordel S, Nielsen J (2015) Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr Biol 7:560–568

    Article  Google Scholar 

  • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid Cell factory. PLoS ONE 8:1–10

    Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  Google Scholar 

  • Partow S, Siewers V, Bjørn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964

    Article  Google Scholar 

  • Payne T, Finnis C, Evans LR, Mead DJ, Avery SV, Archer DB, Sleep D (2008) Appl Environ Microbiol 74:7759–7766

    Article  Google Scholar 

  • Pharkya P, Burgard AP Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14: 2367–2376

    Google Scholar 

  • Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Rost H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R (2013) Complete mass spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    Article  Google Scholar 

  • Piirainen MA, de Ruijter JC, Koskela EV, Frey AD (2014) Glycoengineering of yeasts from the perspective of glycosylation efficiency. New Biotechnol 31(6):532–537

    Article  Google Scholar 

  • Prather KLJ, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19:468–474

    Article  Google Scholar 

  • Rabinovich GA, van Kooyk Y, Cobb BA (2012) Glycobiology of immune responses. Ann N Y Acad Sci 1253:1–15

    Article  Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    Article  Google Scholar 

  • Ravin NV, EldarovMA Kadnikov VV et al (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genom 14:837

    Article  Google Scholar 

  • Robinson A, Hines V, Wittrup K (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnol (NY) 12:381–384

    Article  Google Scholar 

  • Robson GD (2007) Exploitation of fungi. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556

    Article  Google Scholar 

  • Sanchez BJ, Nielsen J (2015) Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol 7(8):846–858

    Article  Google Scholar 

  • Sánchez C, Zhu L, Braña AF, Salas AP, Rohr J, Méndez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci 102:461–466

    Article  Google Scholar 

  • Schroder M (2007) The cellular response to protein unfolding stress. In: Robson GD, van West P, Gadd GM (eds) Exploitation of fungi. British mycological society symposium series, vol 26. Cambridge University Press, Cambridge, pp 117–139

    Google Scholar 

  • Schröder M (2008) Engineering eukaryotic protein factories. Biotechnol Letters 30(2): 187–196

    Google Scholar 

  • Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    Article  Google Scholar 

  • Singh V (2014) Recent advancements in synthetic biology: current status and challenges. Gene 535:1–11

    Article  Google Scholar 

  • Song Y, Choi MH, Park JN, Kim MW, Kim EJ, Kang HA, Kim JY (2007) Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl Environ Microbiol 73:4446–4454

    Article  Google Scholar 

  • Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    Article  Google Scholar 

  • Strahl-Bolsinger S, Gentzsch M, Tanner W (1999) Protein O-mannosylation. Biochim Biophys Acta 1426:297–307

    Article  Google Scholar 

  • Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201

    Article  Google Scholar 

  • Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109:7085–7090

    Article  Google Scholar 

  • Tyo KE, Liu Z, Magnusson Y, Petranovic D, Nielsen J (2014) Impact of protein uptake and degradation on recombinant protein secretion in yeast Applied Microbiology and Biotechnology 98(16):7149

    Google Scholar 

  • Valkonen M, Penttilä M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072

    Article  Google Scholar 

  • Van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  Google Scholar 

  • Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol 30:385–404

    Article  Google Scholar 

  • Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  Google Scholar 

  • Wriessnegger T, Pichler H (2013) Yeast metabolic engineering—targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293

    Article  Google Scholar 

  • Wu SG, He L, Wang Q, Tang YJ (2015) An ancient Chinese wisdom for metabolic engineering. Microb Cell Fact 14:39

    Article  Google Scholar 

  • Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  Google Scholar 

  • Zhang W, Zhao HL, Xue C, Xiong XH, Yao XQ, Li XY, Chen HP, Liu ZM (2006) Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol Prog 22:1090–1095

    Article  Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene over production in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Madhavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhavan, A., Sindhu, R., Arun, K.B., Pandey, A., Binod, P. (2018). Advances and Tools in Engineering Yeast for Pharmaceutical Production. In: Varjani, S., Parameswaran, B., Kumar, S., Khare, S. (eds) Biosynthetic Technology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7434-9_3

Download citation

Publish with us

Policies and ethics