Skip to main content

Land Applications of Biochar: An Emerging Area

  • Chapter
  • First Online:
Waste to Wealth

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In recent years, there has been increasing interest on land application of biochar for improved carbon sequestration, pollutants removal, and soil amelioration. The biomass conversion into biochar and subsequent land application of biochar significantly stabilizes the ecosystem via GHG emission reduction and carbon sequestration, thus leading to the climate change mitigation. Biochar properties (e.g., surface area, microporosity, and pH) significantly improve the soil physiochemical (e.g., water-holding capacity, O2 content, moisture level, nutrient adsorption/desorption, pollutants immobilization), and biological properties (e.g., microbial abundance and activity) improves the soil health. Current research mainly aims to exploit biochar to recover nutrients from waste matters and utilize the resulting nutrient-enriched biochar as a source of micronutrients especially in nutrient-depleting soils to sustain the crop productivity. This chapter compiles the recent advances of biochar in land application, focusing important physiochemical attributes and mechanisms pertinent to soil amelioration and plant growth promotion. Moreover, biochar application rate and methods of land applications are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Ok YS, Rajapaksha AU, Lim JE, Kim BY, Ahn JH, Lee YH, Al-Wabel MI, Lee SE, Lee SS (2016) Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J Hazard Mater 301:179–186

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Ameloot N, Graber E, Verheijen F, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390

    Article  CAS  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84

    Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301

    Article  CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water-holding capacity of sandy soils. Glob Change Biol Bioenerg 5:132–143

    Article  CAS  Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil (Chapter 12). In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, UK, p 207

    Google Scholar 

  • Blackwell P, Shea S, Storer P, Kerkmans M, Stanley I (2007) Improving wheat production with deep banded oil mallee charcoal in Western Australia. In: Talk given at the international agrichar conference 2007, Terrigal, NSW Australia, 27 April–2 May 2007

    Google Scholar 

  • Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549

    Article  CAS  Google Scholar 

  • Bohn HL, Barrow NJ, Rajan SS, Parfitt RL (1986) Reactions of inorganic sulfur in soils. In: Tabatabai MA (ed.) Sulfur in agriculture, agronomic monogram. CSSA, ISSSA, Madison, WI, 27, 233–249

    Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize. J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2013) The nature and properties of soils, 14th edn. Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

  • Brewer CE, Brown RC (2012) Biochar. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Oxford, pp 357–384

    Chapter  Google Scholar 

  • Brewer CE, Hu YY, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41(4):1115–1122

    Article  CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  Google Scholar 

  • Carter S, Shackley S, Sohi S, Suy TB, Haefele S (2013) -. Agronomy 3:404–418

    Article  CAS  Google Scholar 

  • Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agr Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aus J Soil Res 46(5):437–444

    Article  Google Scholar 

  • Chen G, Chen Y, Zhao G, Cheng W, Guo S, Zhang H, Shi W (2015) Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?. Agric Ecosyst Environ 209:26–33

    Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404

    Article  CAS  Google Scholar 

  • Collins H (2008) Use of biochar from the pyrolysis of waste organic material as a soil amendment: laboratory and greenhouse analyses. A quarterly progress report prepared for the biochar project

    Google Scholar 

  • Coulouma G, Boizard H, Trotoux G, Lagacherie P, Richard G (2006) Effect of deep tillage for vineyard establishment on soil structure: a case study in southern France. Soil Tillage Res 88:132–143

    Article  Google Scholar 

  • Crombie K, Mašek O, Cross A, Sohi S (2015) Biochar–synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenerg 7(5):1161–1175

    Article  CAS  Google Scholar 

  • Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenerg 5(2):122–131

    Article  CAS  Google Scholar 

  • Curtin D, Trolove S (2013) Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Res 51:494–502

    Article  CAS  Google Scholar 

  • David MB, Gentry LE, Mitchell CA (2016) Riverine response of sulfate to declining atmospheric sulfur deposition in agricultural watersheds. J Environ Qual 45:1313–1319

    Article  CAS  Google Scholar 

  • Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30:2558–2579

    Article  CAS  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2015) Biochar effects on soil nutrient transformations. Biochar for environmental management: science. In: Technology and Implementation. Taylor and Francis, New York, USA, pp 421–454

    Google Scholar 

  • Dumroese RK, Heiskanen J, Englund K, Tervahauta A (2011) Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenerg 35:2018–2027

    Article  CAS  Google Scholar 

  • Emmalea E (2016) Sulfur deficiency on field corn, https://extension.udel.edu/weeklycropupdate/?p=9161. Last accessed 2017/03/04

  • Feng YZ, Xu YP, Yu YC, Xie ZB, Lin XG (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Ganjegunte GK, Wick AF, Stahl P, Vance GF (2009) Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degrad Dev 20:156–175

    Article  Google Scholar 

  • Gathorne-Hardy A, Knight J, Woods J (2008) Surface application of biochar to pasture—changes in yield, diversity, forage quality, and its incorporation into the soil. In: Poster presented at the 2nd Annual meeting of the International Biochar Initiative (IBI), Newcastle, UK, 8–10 Sept 2008

    Google Scholar 

  • Genesio L, Miglietta F, Baronti S, Vaccari FP (2015) Biochar increases vineyard productivity without affecting grape quality: results from a four years field experiment in Tuscany. Agric Ecosyst Environ 201:20–25

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Gómez-Rey MX, Madeira M, Coutinho J (2012) Wood ash effects on nutrient dynamics and soil properties under Mediterranean climate. Ann For Sci 69:569–579

    Article  Google Scholar 

  • Gonzaga MIS, Mackowiak CL, Comerford NB, Molin EFV, Shirley JP, Guimaraes DV (2017) Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil Til. Res. 165:59–65

    Article  Google Scholar 

  • Graber ER, Elad Y (2013) Biochar impact on plant resistance to disease. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93

    Article  Google Scholar 

  • Hockaday WC (2006) The organic geochemistry of charcoal black carbon in the soils of the University of Michigan Biological Station. Ohio State University, Ohio, Columbus

    Google Scholar 

  • Hofrichter M, Ziegenhagen D, Sorge S, Ullrich R, Bublitz F, Fritsche W (1999) Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system. Appl Microbiol Biotechnol 52:78–84

    Article  CAS  Google Scholar 

  • International Biochar Initiative (IBI) (2013) Standardized product definition and product testing guidelines for biochar that is used in soil. http://www.biochar-international.org/. Last accessed 2017/05/04

  • Iqbal H, Garcia-Perez M, Flury M (2015) Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci Total Environ 521–522:37–45

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources, 2nd edn. World soil resources report no 103, UN Food and Agriculture Organization, Rome, pp 128

    Google Scholar 

  • Jaafar NM, Clode PL, Abbott LK (2014) Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J Integr Agr 13:483–490

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, Van Der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kanjanarong J, Giri BS, Oliveira FR, Boonsawang P, Chaiprapat S, Singh RS, Balakrishna A, Jaisi DP, Khanal SK (2017) Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms. Bioresour Technol 234:115–121

    Article  CAS  Google Scholar 

  • Kilicken A, Guner M (2006) Pneumatic conveying characteristics of cotton seeds. Biosyst Eng 95:537–546

    Article  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi J, Riha SJ, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradationgradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kleegberg KK, Schlegemilch M, Strees J, Stcinhart H, Stegmann R (2005) Odour abatement strategy for a sustainable odour management. In: Proceedings of the tenth international waste management and landfill symposium, Sardinia

    Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of great Nicobar Island, India. Biol Fert Soils 42:358–361

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3):436–442

    Article  CAS  Google Scholar 

  • Laird DA, Rogovska NP, Garcia-Perez M, Collins HP, Streubel JD, Smith M (2011) Pyrolysis and biochar–opportunities for distributed production and soil quality enhancement. In: Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six US regions. Proceedings of the sustainable feedstocks for advanced biofuels workshop, SWCS publisher, Atlanta, GA, pp 257–281

    Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172(12):943–956

    Article  CAS  Google Scholar 

  • Lashari MS, Ye YX, Ji HS, Li LQ, Kibue GW, Lu HF, Zheng JF, Pan GX (2015) Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from Central China: a two-year field experiment. J Sci Food Agr 95:1321–1327

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in soil. Biochar Environ Manag: Sci Technol:183–206

    Google Scholar 

  • Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation. Taylor and Francis Group, Routledge, USA

    Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70

    Google Scholar 

  • Lima IM, Boateng AA, Klasson KT (2010) Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. J Chem Technol Biotechnol 85(11):1515–1521

    CAS  Google Scholar 

  • Liu XH, Zhang XC (2012) Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. Int J Agr Biol 14:745–750

    CAS  Google Scholar 

  • Liu Z, Chen X, Jing Y, Li Q, Zhang J, Huang Q (2014) Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. CATENA 123:45–51

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862

    Article  CAS  Google Scholar 

  • Lu SG, Sun FF, Zong YT (2014) Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). CATENA 114:37–44

    Article  Google Scholar 

  • Major J (2010) Guidelines on practical aspects of biochar application to field soil in various soil management systems. 1–23

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Major J, Steiner C, Downie A, Lehmann J (2009) Biochar effects on nutrient leaching (Chapter 15). In: Lehmann J, Joseph S (eds), Biochar for environmental management: science and technology. Earthscan, London, UK, p 271

    Google Scholar 

  • Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146

    Article  CAS  Google Scholar 

  • Masiello CA, Gao YCX, Liu S, Cheng H-Y, Bennett MR, Rudgers JA, Wagner DS, Zygourakis K, Silberg JJ (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ Sci Technol 47:11496–11503

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, SchÅNaffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils. J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mete FJ, Mia S, Dijkstra FA, Abuyusuf M, Iqbal Hossain ASM (2015) Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 25(5):713–719

    Article  Google Scholar 

  • Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J Anal Appl Pyrol 104:485–493

    Article  CAS  Google Scholar 

  • Noguera D, Rondón M, Laossi KR, Hoyos V, Lavelle P, de Carvalho MHC, Barot S (2010) Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem 42:1017–1027

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • Novak JM, Cantrell KB, Watts DW (2013) Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis. Bioenerg Res 6:114–130

    Article  CAS  Google Scholar 

  • Peake LR, Reid BJ, Tang X (2014) Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235:182–190

    Article  Google Scholar 

  • Purakayastha TJ, Das KC, Gaskin J, Harris K, Smith JL, Kumari S (2016) Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil Til Res 155:107–115

    Article  Google Scholar 

  • Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100:5348–5351

    Article  CAS  Google Scholar 

  • Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230:340–347

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In USDA (ed) Proceedings of the third USDA symposium on greenhouse gases and carbon sequestration in agriculture and forestry. USDA, Baltimore, p 208

    Google Scholar 

  • Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass and Bioenerg 46:693–701

    Article  CAS  Google Scholar 

  • Sistani KR, Torbert HA, Way TR, Bolster CH, Porte DH, Warren JG (2009) Boiler litter application a d runoff timing effect on nutrient and Escherichia coli losses from tall fescue pasture. J Environ Qual 38:1216–1223

    Article  CAS  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Report 05/09. CSIRO, Canberra

    Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48:546–554

    Article  CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Lentz RD (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41(4):973–989

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869–882

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Vasconcelos JL, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Stewart CE, Zheng J, Botte J, Cotrufo F (2013) Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioenerg 5:153–164

    Article  CAS  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenerg 84:37–48

    Article  CAS  Google Scholar 

  • Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027

    Article  CAS  Google Scholar 

  • Thies E, Rilling MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. London, UK, Earthscan, pp 85–106

    Google Scholar 

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manage 129:62–68

    Article  CAS  Google Scholar 

  • Tom M (2008) Biochar white paper, the international biochar initiative 2007, biochar: a soil amendment that combats global warming and improves agricultural sustainability and environmental impacts. http://biochar.bioenergylists.org/ibiaboutbiochar. Last accessed 2017/05/12

  • Tong SJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834

    Article  CAS  Google Scholar 

  • Topoliantz S, Ponge JF (2005) Charcoal consumption and casting activity by Pontoscolex corethrurus (Glossoscolecidae). Appl Soil Ecol 28:217–224

    Google Scholar 

  • Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203

    Article  CAS  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437

    Article  CAS  Google Scholar 

  • Uras U, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrol 98:207–213

    Article  CAS  Google Scholar 

  • US Bureau of Mines (2008) Dust and its control, in dust control handbook for mineral processing, US Department of the interior, Chapter 1. www.osha.gov/SLTC/silicacrystalline/dust/chapter_1.html. Last accessed 2016/12/04 (2008)

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212

    Article  Google Scholar 

  • Van DTT, Mui NT, Ledin I (2006) Effect of processing foliage of Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing goats. Anim Feed Sci Tech 130:242–256

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 48:555–568

    Article  CAS  Google Scholar 

  • Van Zwieten L, Singh B, Joseph S, Cowie A, Chan K (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Sci. Technol. Earthscan, London, pp 227–249

    Google Scholar 

  • Van Zwieten L (2007) Research confirms biochar in soils boosts crop yields (last cited Dec 2016). http://biopact.com/2007/06/research-confirms-biochar-in-soils.htmlS

  • Van Zwieten L, Meszaros I, Downie A, Chan YK, Joseph S (2008) Soil health: can the cane industry use a bit of black magic. In: Australian Canegrower 17

    Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash: part 2. Potential utilization, technological and ecological advantages and challenges. Fuel 105:19–39

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde, M. Diafas, I (2010) Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN, Office for the Official Publications of the European Communities. Luxembourg

    Google Scholar 

  • Vithanage M, Rajapaksha AU, Tang X, Bruhn ST, Kim KH, Lee SE, Ok YS (2014) Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J Environ Manage 141:95–103

    Article  CAS  Google Scholar 

  • Wang K, He C, You S, Liu W, Wang W, Zhang R, Ren N (2015) Transformation of organic matters in animal wastes during composting. J Hazard Mater 300:745–753

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Response to comment on fire-derived charcoal causes loss of forest humus. Science 321:1295d

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manage 146:189–197

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street‐Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Commun 1:56

    Google Scholar 

  • World Health Organization (2017) Don’t pollute my future!, The impact of the environment on children’s health. Geneva, Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Xu G, Sun J, Shao H, Chang SX (2014a) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60

    Article  Google Scholar 

  • Xu X, Cao X, Zhao L, Sun T (2014b) Comparison of sewage sludge and pig manure derived biochars for hydrogen sulfide removal. Chemosphere 111:296–303

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11):1467–1471

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain. China Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhang K, Cheng X, Dang H, Ye C, Zhang Y, Zhang Q (2013) Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol Biochem 57:803–813

    Article  CAS  Google Scholar 

  • Zhang H, Voroney RP, Price GW, Andrew J, White AJ (2016) Sulfur-enriched biochar as a potential soil amendment and fertilizer. Soil Res. http://dx.doi.org/10.1071/SR15256

  • Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol 130:463–471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study is being supported partly by the HATCH grant from the College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa (UHM), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação (Capes/MEC), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, A.K. (2018). Land Applications of Biochar: An Emerging Area. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_9

Download citation

Publish with us

Policies and ethics