Advertisement

A Content-Aware Analytics Framework for Open Health Data

  • L. KoumakisEmail author
  • H. Kondylakis
  • D. G. Katehakis
  • G. Iatraki
  • P. Argyropaidas
  • M. Hatzimina
  • K. Marias
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 66)

Abstract

The vision of personalized medicine has led to an unprecedented demand for acquiring, managing and exploiting health related information, which in turn has led to the development of many e-Health systems and applications. However, despite this increasing trend only a limited set of information is currently being exploited for analysis and this has become a major obstacle towards the advancement of personalized medicine. To this direction, this paper presents the design and implementation of a content aware health data-analytics framework. The framework enables first the seamless integration of the available data and their efficient management through big data management systems and staging environments. Then the integrated information is further anonymized at run-time and accessed by the data analysis algorithms in order to provide appropriate statistical information, feature selection correlation and clustering analysis.

Keywords

Data analysis Data mining Heath data integration IHE profiles Semantic interoperability 

Notes

Acknowledgements

This work has been supported by the iManageCancer H2020 EU programme under grant agreement No 643529.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Yoo I, Alafaireet P, Marinov M et al (2012) Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst 36:2431–2448.  https://doi.org/10.1007/s10916-011-9710-5CrossRefGoogle Scholar
  2. 2.
    Potamias G, Koumakis L, Moustakis V (2005) Mining XML clinical data: the healthobs system. Ingénierie des systèmes d’information 10:59–79CrossRefGoogle Scholar
  3. 3.
    Reddy CK, Aggarwal CC (2015) Healthcare data analytics. CRC PressGoogle Scholar
  4. 4.
    Belle A, Thiagarajan R, Soroushmehr SMR, et al (2015) Big data analytics in healthcare. Hindawi Publ Corp, pp 1–16.  https://doi.org/10.1155/2015/370194CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Chadwick DW, Lievens SF (2008) Enforcing “sticky” security policies throughout a distributed application. In: MidSec ’08 proceedings of the 2008 work middleware security, pp 1–6. http://doi.acm.org/10.1145/1463342.1463343
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Kondylakis H, Bucur A, Dong F, et al (2017) iManagecancer: developing a platform for empowering patients and strengthening self-management in cancer diseases. In: 30th IEEE International Symposium on Computer-Based Medical Systems. IEEE CBMSGoogle Scholar
  12. 12.
    Pappas A, Troullinou G, Roussakis G, et al (2017) exploring importance measures for summarizing RDF/SKBs. In: Blomqvist E, Maynard D, Gangemi A, et al (eds) Proceedings of the 14th international semantic web conference, ESWC 2017, Portorož, Slov. 28 May–1 June 2017, Part I. Springer International Publishing, Cham, pp 387–403CrossRefGoogle Scholar
  13. 13.
    Potamias G, Koumakis L, Moustakis V (2004) Gene selection via discretized gene-expression profiles and greedy feature-elimination. In: 2004 Proceedings of the methods and applications of artificial intelligence: third helenic conference on AI, SETN 2004, Samos, Greece, 5–8 May 2004, pp 256–266CrossRefGoogle Scholar
  14. 14.
    Koumakis L, Moustakis V, Zervakis M, et al (2012) Coupling regulatory networks and microarays: Revealing molecular regulations of breast cancer treatment responses Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) pp 239–246Google Scholar
  15. 15.
    McCabe GP (1984) Principal variables. Technometrics 26:137–144.  https://doi.org/10.2307/1268108MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Newcomer SR, Steiner JF, Bayliss EA (2011) Identifying subgroups of complex patients with cluster analysis. Am J Manag CareGoogle Scholar
  17. 17.
    MacQueen JB (1967) Kmeans some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, vol 1, pp 281–297. doi:citeulike-article-id:6083430Google Scholar
  18. 18.
    Kondylakis H, Kazantzaki E, Koumakis L et al (2014) Development of interactive empowerment services in support of personalised medicine. Ecancermedicalscience 8Google Scholar
  19. 19.
    Kondylakis H, Koumakis L, Kazantzaki E et al (2015) Patient Empowerment through Personal Medical Recommendations Stud Health Technol Inform p 1117Google Scholar
  20. 20.
    Huang BE, Mulyasasmita W, Rajagopal G (2016) The path from big data to precision medicine. Expert Rev Precis Med Drug Dev 1:129–143.  https://doi.org/10.1080/23808993.2016.1157686CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • L. Koumakis
    • 1
    Email author
  • H. Kondylakis
    • 1
  • D. G. Katehakis
    • 1
  • G. Iatraki
    • 1
  • P. Argyropaidas
    • 1
  • M. Hatzimina
    • 1
  • K. Marias
    • 1
  1. 1.Institute of Computer ScienceFoundation for Research and Technology (FORTH)HeraklionGreece

Personalised recommendations