Skip to main content

Mechanism and Action of Aureobasidium pullulans on Biosorption of Metals

  • Chapter
  • First Online:
Waste Bioremediation

Abstract

In the present scenario, management of heavy metals discharged from industrial effluents has become one of the consequential environmental challenges. Conventional effluent treatment methods are very expensive and generate hazardous sludge. Biosorption using microbial sources is a promising eco-friendly alternative for heavy metals removal. In the past few decades, filamentous fungi, Aureobasidium pullulans, have gained attention due to its high biomass generation, easy upscaling, and its tolerance toward heavy metals than other fungal species. Aureobasidium pullulans is nonpathogenic microorganism used in food, cosmetics, and pharmaceutical industries. This chapter focuses on morphology, mode of sequestration, and accumulation of various heavy metals by A. pullulans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Satar AM, Ali MH, Goher ME (2017) Indices of water quality and metal pollution of Nile River, Egypt. Egypt J Aquat Res 43(1):21–29

    Google Scholar 

  • Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40(1):6–17

    Google Scholar 

  • Baharom ZS, Ishak MY (2015) Determination of heavy metal accumulation in fish species in Galas River, Kelantan and Beranang mining pool, Selangor. Proc Environ Sci 30:320–325

    Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24(1):411–451

    Google Scholar 

  • Bermejo JM, Dominguez JB, Goni FM, Uruburu F (1981) Influence of pH on the transition from yeast-like cells to chlamydospores in Aureobasidium pullulans. Antonie Van Leeuwenhoek 47(5):385–392

    Google Scholar 

  • Dizge N, Keskinler B, Barlas H (2009) Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. J Hazard Mater 167(1):915–926

    Google Scholar 

  • Dominguez JB, Goni FM, Uruburu F (1978) The transition from yeast-like to chlamydospore cells in Pullularia pullulans. Microbiol 108(1):111–117

    Google Scholar 

  • D’Souza SF, Sar P, Kazy SK, Kubal BS (2006) Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. J Environ Sci Health A 41(3):487–500

    Google Scholar 

  • El-Moselhy KM, Othman AI, El-Azem HA, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1(2):97–105

    Google Scholar 

  • Fomina M, Gadd GM (2003) Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78(1):23–34

    Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124(1):25–60

    Google Scholar 

  • Gadd GM, Griffiths AJ (1980a) Effect of copper on morphology of Aureobasidium pullulans. Trans Br Mycol Soc 74(2):387–392

    Google Scholar 

  • Gadd GM, Griffiths AJ (1980b) Influence of pH on toxicity and uptake of copper in Aureobasidium pullulans. Trans Br Mycol Soc 75(1):91–96

    Google Scholar 

  • Gadd GM, Mowll JL (1985) Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Exp Mycol 9(3):0–40

    Google Scholar 

  • Gadd GM, Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29(6):610–617

    Google Scholar 

  • Gadd GM, White C, Mowll JL (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol Ecol 3(5):261–267

    Google Scholar 

  • Gaur R, Singh R, Gupta M, Gaur MK (2010) Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotech 9(47):7989–7997

    Google Scholar 

  • Ghaedi M, Brazesh B, Karimi F, Ghezelbash GR (2014) Equilibrium, thermodynamic, and kinetic studies on some metal ions biosorption using black yeast Aureobasidium pullulans biomass. Environ Prog Sustain Energy 33(3):769–776

    Google Scholar 

  • Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340

    Google Scholar 

  • Hoque E, Fritscher J (2016) A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiology 5(5):763–781

    Google Scholar 

  • Irazusta V, de Figueroa LI (2014) Copper resistance and oxidative stress response in Rhodotorula mucilaginosa RCL-11 yeast isolated from contaminated environments in Tucumán, Argentina. In: Bioremediation in Latin America, Springer International Publishing, pp 241–253

    Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13(4):708–717

    Google Scholar 

  • Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. Int J Environ Res Public Health 13(7):663

    Google Scholar 

  • Macaskie LE, Dean AC, Cheetham AK, Jakeman RJ, Skarnulis AJ (1987) Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. Microbiology 133(3):539–544

    Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55(3):431–442

    Google Scholar 

  • Mowll JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. Microbiology 130(2):279–284

    Google Scholar 

  • Oller AR (2005) Aureobasidium pullulans morphology: two adapted polysaccharide stains. Can J Microbiol 51(12):1057–1060

    Google Scholar 

  • Park JK, Kim WS, Chang HN (2001) Specific Cd2+ uptake of encapsulated Aureobasidium pullulans biosorbents. Biotech lett 23(17):1391–1396

    Google Scholar 

  • Patil YB, Paknikar KM (1999) Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotech Lett 21(10):913–919

    Google Scholar 

  • Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci 1–9

    Google Scholar 

  • Radulović MĐ, Cvetković OG, Nikolić SD, Đorđević DS, Jakovljević DM, Vrvić MM (2008) Simultaneous production of pullulans and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Biores Technol 99(14):6673–6677

    Google Scholar 

  • Reeslev M, Jørgensen BB, Jørgensen OB (1993) Influence of Zn2 + on yeast-mycelium dimorphism and exopolysaccharide production by the fungus Aureobasidium pullulans grown in a defined medium in continuous culture. Microbiology 139(12):3065–3070

    Google Scholar 

  • Regulez P, Ponton J, Dominguez JB, Goñi FM, Uruburu F (1980) Lipid composition and the transition from yeast-like to chlamydospore cells of Pullularia pullulans. Can J Microbiol 26(12):1428–1437

    Google Scholar 

  • Shabtai Y, Mukmenev I (1995) Enhanced production of pigment-free pullulan by a morphogenetically arrested Aureobasidium pullulans (ATCC 42023) in a two-stage fermentation with shift from soy bean oil to sucrose. Appl Microbiol Biotechnol 43(4):595–603

    Google Scholar 

  • Suh JH, Kim DS, Oh SJ, Park YS, Song SK (1997) The biosorption rate of lead by Aureobasidium pullulans. Environ Eng Res 2(4):287–290

    Google Scholar 

  • Suh JH, Yun JW, Kim DS (1999) Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Biosyst Eng 21(1):1–4

    Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47(4):821–824

    Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115(3):203–211

    Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316

    Google Scholar 

  • Viraraghavan T, Srinivasan A (2011) Fungal biosorption and biosorbents. In: Microbial biosorption of metals, Springer, Netherlands pp 143–158

    Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Google Scholar 

  • Zalar P, Gostinčar C, De Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Google Scholar 

  • Zodape GV (2014) Metal contamination in commercially important prawn and shrimp species collected from malad market of Mumbai suburb of India. Nat Environ Pollut Technol 13(1):125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Nakkeeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakkeeran, E., Rathna, R., Viveka, R. (2018). Mechanism and Action of Aureobasidium pullulans on Biosorption of Metals. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_11

Download citation

Publish with us

Policies and ethics