Skip to main content

Mechanics and Modelling of Turbulence–Combustion Interaction

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Engineering applications of combustion for aviation, automotive and power generation invariably encounter an underlying turbulent flow field. A proper understanding of the complex turbulence–combustion interactions, flame structure and dynamics is indispensable towards the optimal design and systematic evolution of these applications. A predictive solution of turbulent combustion phenomenon in a practical combustion system where all scales of turbulence are fully resolved is extremely difficult with currently available computational facilities. The urgent requirement for the solution of fluid engineering problems has led to the emergence of turbulence models. The turbulence models could be systematically derived based on the Navier–Stokes equations up to a certain point; however, they require closure hypotheses that depend on dimensional arguments and empirical input. Over the past several decades, turbulence models based on Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) framework have been developed and used for engineering applications. The success of turbulence models for non-reactive flows has encouraged similar approaches for turbulent reactive flows which consequently led to the development of turbulent combustion models. Modelling of the chemical source term remains the central issue of turbulent combustion simulations. In this introductory chapter, we will review the basics of turbulent flows and multiscale interactions between turbulence and combustion, and proceed towards a brief discussion on the state-of-the-art turbulent combustion models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ρ :

Density

u :

Velocity

R u :

Universal gas constant

p :

Pressure

\( \tau_{ij} \) :

Viscous stress tensor

\( \mu \) :

Dynamic viscosity

\( \upsilon \) :

Kinematic viscosity

Y :

Mass fraction

D :

Mass diffusivity

Sc :

Schmidt number

Pr :

Prandtl number

Le :

Lewis number

Re:

Reynold’s number

\( \lambda \) :

Thermal conductivity

\( \alpha \) :

Thermal diffusivity

X :

Mole fraction

W :

Molecular weight

E a :

Activation energy

T :

Temperature

h :

Enthalpy

\( \overrightarrow {{\dot{q}}} \) :

Heat flux

Q :

Conditional mean

C χ :

Scalar dissipation constant

Z:

Mixture fraction

J :

Flux

\( \tau_{L} \) :

Mixing timescale

Δ:

Filter width

T a :

Activation temperature

k (f), k (r) :

Forward and reverse reaction rates

n r :

Number of reactions

n s :

Number of species

\( \chi \) :

Scalar dissipation

\( {\varepsilon } \) :

Dissipation rate

\( {k} \) :

Turbulent kinetic energy

\( \mathop \omega \limits^{ \cdot } \) :

Chemical source term

η :

Sample space

P :

Probability density function

C s :

Smagorinsky model constant

\( {\mathcal{T}}_{ij} \) :

Residual stress tensor

\( {\mathcal{L}}_{ij} \) :

Leonard term

\( {\mathcal{M}}_{ij} \) :

Modelled term

\(\eta\) :

Kolmogorov length scale

–:

Average, ensemble or time average depending on context

~:

Favre average

″:

Fluctuations with respect to conditional mean

′:

Fluctuations with respect to unconditional mean

J:

Reaction number

I:

Species

References

  • Ashurst WT, Kerstein A, Kerr R, Gibson C (1987) Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys Fluids 30:2343–2353

    Article  Google Scholar 

  • Bilger RW (1976) Turbulent jet diffusion flames. Prog Energy Combust Sci 1:87–109

    Article  Google Scholar 

  • Bilger RW (1993) Conditional moment closure for turbulent reacting flow. Phys Fluids a-Fluid Dyn 5:436–444

    Article  MATH  Google Scholar 

  • Bilger RW (2000) Future progress in turbulent combustion research. Prog Energy Combust Sci 26:367–380

    Article  Google Scholar 

  • Bilger RW, Pope SB, Bray KNC, Driscoll JF (2005) Paradigms in turbulent combustion research. Proc Combust Inst 30:21–42

    Article  Google Scholar 

  • Bray KNC, Peters N (1994) Laminar flamelet in turbulent flames. In: Libby PA, Williams FA (ed) Turbulent reacting flows. Academic Press, London

    Google Scholar 

  • Celis C, da Silva LFF (2015) Lagrangian mixing models for turbulent combustion: review and prospects. Flow Turbul Combust 94:643–689

    Article  Google Scholar 

  • Chakraborty N, Swaminathan N (2007) Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys Fluids 19:045103

    Article  MATH  Google Scholar 

  • Chaudhuri S (2015a) Life of flame particles embedded in premixed flames interacting with near isotropic turbulence. Proc Combust Inst 35:1305–1312

    Article  Google Scholar 

  • Chaudhuri S (2015b) Pair dispersion of turbulent premixed flame elements. Phys Rev E 91:021001

    Article  Google Scholar 

  • De S, Kim SH (2013) Large eddy simulation of dilute reacting sprays: droplet evaporation and scalar mixing. Combust Flame 160:2048–2066

    Article  Google Scholar 

  • Dopazo C (1994) Recent developments in PDF methods. In: Libby PA, Williams FA (ed) Turbulent reacting flows. Academic, London

    Google Scholar 

  • Dopazo C, Obrien EE (1974) Approach to autoignition of a turbulent mixture. Acta Astronaut 1:1239–1266

    Article  MATH  Google Scholar 

  • Germano M (1989) The dean equations extended to a helical pipe-flow. J Fluid Mech 203:289–305

    Article  MATH  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids a-Fluid 3:1760–1765

    Article  MATH  Google Scholar 

  • Girimaji S, Pope S (1990) Material-element deformation in isotropic turbulence. J Fluid Mech 220:427–458

    Article  Google Scholar 

  • Girimaji S, Pope S (1992) Propagating surfaces in isotropic turbulence. J Fluid Mech 234:247–277

    Article  MATH  Google Scholar 

  • Hamlington PE, Schumacher J, Dahm WJ (2008) Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. Phys Rev E 77:026303

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze JO (1975) Turbulence. McGraw-Hill, New york

    Google Scholar 

  • Janicka J, Kolbe W, Kollmann W (1979) Closure of the transport-equation for the probability density-function of turbulent scalar fields. J Non-Equilib Thermodyn 4:47–66

    Article  MATH  Google Scholar 

  • Jimenez C, Valino L, Dopazo C (2001) A priori and a posteriori tests of subgrid scale models for scalar transport. Phys Fluids 13:2433–2436

    Article  MATH  Google Scholar 

  • Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  • Kerstein AR (1988) Simple derivation of Yakhots turbulent premixed flamespeed formula. Combust Sci Technol 60:163–165

    Article  Google Scholar 

  • Kerstein AR, Ashurst WT, Williams FA (1988) Field equation for interface propagation in an unsteady homogeneous flow field. Phys Rev A 37:2728–2731

    Article  Google Scholar 

  • Kim SH, Pitsch H (2007) Scalar gradient and small-scale structure in turbulent premixed combustion. Phys Fluids 19:115104

    Article  MATH  Google Scholar 

  • Klimenko AY (1990) Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dyn 25:327–334

    Article  MATH  Google Scholar 

  • Klimenko AY, Pope SB (2003) The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys Fluids 15:1907–1925

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 299–303

    Google Scholar 

  • Kronenburg A (2004) Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Phys Fluids 16:2640–2648

    Article  MATH  Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  • Libby PA, Williams FA (1994) Fundamental aspects and review. In: Libby PA, Williams FA (eds) Turbulent reacting flows. Academic Press, London

    Google Scholar 

  • Lilly DK (1992) A proposed modification of the germano-subgrid-scale closure method. Phys Fluids a-Fluid 4:633–635

    Article  Google Scholar 

  • Magnussen BF, Hjertager BH (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp (Int) Combust 16:719–729

    Article  Google Scholar 

  • Mahesh K, Constantinescu G, Apte S, Iaccarino G, Ham F, Moin P (2006) Large-eddy simulation of reacting turbulent flows in complex geometries. J Appl Mech-T Asme 73:374–381

    Article  MATH  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    Article  MATH  Google Scholar 

  • Patel N, Menon S (2008) Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust Flame 153:228–257

    Article  Google Scholar 

  • Patwardhan SS, De S, Lakshmisha KN, Raghunandan BN (2009) CMC simulations of lifted turbulent jet flame in a vitiated coflow. Proc Combust Inst 32:1705–1712

    Article  Google Scholar 

  • Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10:319–339

    Article  Google Scholar 

  • Peters N (1999) The turbulent burning velocity for large-scale and small-scale turbulence. J Fluid Mech 384:107–132

    Article  MATH  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pitsch H (2006) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482

    Article  MathSciNet  MATH  Google Scholar 

  • Poinsot T, Veynante D (2012) Theoretical and numerical combustion, 3rd edn. Toulouse Cedex

    Google Scholar 

  • Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192

    Article  Google Scholar 

  • Pope S (1988) The evolution of surfaces in turbulence. Int J Eng Sci 26:445–469

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theoret Model 1:41–63

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press

    Google Scholar 

  • Spalding DB (1971) Mixing and chemical reaction in steady confined turbulent flames. Symp (Int) Combust 13:649–657

    Article  Google Scholar 

  • Sreedhara S, Lakshmisha KN (2002) Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc Combust Inst 29:2069–2077

    Article  Google Scholar 

  • Sreenivasan KR (1995) On the universality of the Kolmogorov constant. Phys Fluids 7:2778–2784

    Article  MathSciNet  MATH  Google Scholar 

  • Straub C, De S, Kronenburg A, Vogiatzaki K (2016) The effect of timescale variation in multiple mapping conditioning mixing of PDF calculations for Sandia Flame series D–F. Combust Theory Model 1–19

    Google Scholar 

  • Subramaniam S, Pope SB (1998) A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust Flame 115:487–514

    Article  Google Scholar 

  • Subramaniam S, Pope SB (1999) Comparison of mixing model performance for nonpremixed turbulent reactive flow. Combust Flame 117:732–754

    Article  Google Scholar 

  • Sundaram B, Klimenko AY (2017) A PDF approach to thin premixed flamelets using multiple mapping conditioning. Proc Combust Inst 36:1937–1945

    Article  Google Scholar 

  • Swaminathan N, Grout R (2006) Interaction of turbulence and scalar fields in premixed flames. Phys Fluids 18:045102

    Article  MathSciNet  MATH  Google Scholar 

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404

    Article  MathSciNet  MATH  Google Scholar 

  • Trouve A, Poinsot T (1994) The evolution equation for the flame surface-density in turbulent premixed combustion. J Fluid Mech 278:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Turns SR (2012) An Introduction to combustion, 3rd edn. Tata McGraw hill, New York

    Google Scholar 

  • Uranakara HA, Chaudhuri S, Dave HL, Arias PG, Im HG (2016) A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames. Combust Flame 163:220–240

    Article  Google Scholar 

  • Uranakara HA, Chaudhuri S, Lakshmisha K (2017) On the extinction of igniting kernels in near-isotropic turbulence. Proc Combust Inst 36:1793–1800

    Article  Google Scholar 

  • Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci 28:193–266

    Article  Google Scholar 

  • Vogiatzaki K, Cleary MJ, Kronenburg A, Kent JH (2009) Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning. Phys Fluids 21

    Google Scholar 

  • Vogiatzaki K, Navarro-Martinez S, De S, Kronenburg A (2015) Mixing modelling framework based on multiple mapping conditioning for the prediction of turbulent flame extinction. Flow Turbul Combust 95:501–517

    Article  Google Scholar 

  • Vreman B, Geurts B, Kuerten H (1997) Large-eddy simulation of the turbulent mixing layer. J Fluid Mech 339:357–390

    Article  MathSciNet  MATH  Google Scholar 

  • William FA (1975) Recent advances in theoretical descriptions of turbulent diffusion flames. In: Murthy SNB (ed) Turbulent mixing in nonreactive and reactive flows. Plenum Press, New York, pp 189–208

    Chapter  Google Scholar 

  • Xu H, Pumir A, Bodenschatz E (2011) The pirouette effect in turbulent flows. Nat Phys 7:709

    Article  Google Scholar 

  • Yeung P, Girimaji S, Pope S (1990) Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust Flame 79:340–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santanu De, Chaudhuri, S. (2018). Mechanics and Modelling of Turbulence–Combustion Interaction. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics