Application of Analog Electronic Circuits in Secure Communication: A Review

  • Manish Kumar Thukral
  • Karma Sonam Sherpa
  • Kumkum Garg
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)


In recent times, secure communication has been one of the most exciting areas of research, and many analog electronics circuits have been found to be useful in this area. In this paper, different types of analog circuits exhibiting nonlinear dynamics have been reviewed. It has been shown that such circuits can generate signals which have frequency spectrum characteristics similar to noise. This leads to an important conclusion that a low-cost spread spectrum-based secure communication model can be developed using analog circuits. A few of the secure communication models developed using these analog circuits have also been reviewed. It is expected that this paper would enable readers to explore more analog circuits which can be used in secure communication in a better way.


Nonlinear dynamics Chaotic communication Spread spectrum Chua’s circuit Coherent receiver Non-coherent receiver 


  1. 1.
    Li S, Alvarez G, Li Z, Halang WA (2007) Analog chaos-based secure communications and cryptanalysis: a brief survey. In: 3rd international IEEE scientific conference on physics and controlGoogle Scholar
  2. 2.
    Li Z, Li K, Wen C, Soh YC (2003) A new chaotic secure communication system. IEEE Trans Commun 51:1306–1312CrossRefGoogle Scholar
  3. 3.
    Eisencraft M, Fanganiello RD et al (2012) Chaos based communication systems in non-ideal channels. J Commun Nonlinear Sci Numer Simulat 17:4707–4718CrossRefGoogle Scholar
  4. 4.
    Kennedy M, Rovatti R, Setti G (2000) Chaotic electronics in telecommunications. CRC Press, Inc., Boca Raton, FL, USAGoogle Scholar
  5. 5.
    Murali K, Leung H, Yu H (2003) Design of noncoherent receiver for analog spread-spectrum communication based on chaotic masking. IEEE Trans Circuits Syst I FundamTheory Appl 50:432–441CrossRefGoogle Scholar
  6. 6.
    Jiang ZP (2002) A note on chaotic secure communication systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49:92–96CrossRefGoogle Scholar
  7. 7.
    Chen YY (1996) Masking messages in chaos. Europhys Lett 34:245–250CrossRefGoogle Scholar
  8. 8.
    Milanovic V, Zaghloul ME (1996) Improved masking algorithm for chaotic communication system. Electron Lett 32:11–12CrossRefGoogle Scholar
  9. 9.
    Dmitriev AS, Panas AI, Starkov SO, Kuzmin LV (1997) Experiments on RF band communications using chaos. Int J Bifurcation Chaos 7:2511–2527CrossRefGoogle Scholar
  10. 10.
    Leung H, Lam J (1997) Design of demodulator for the chaotic modulation communication system. IEEE Trans Circuits Syst I Fundam Theory Appl 44:262–267CrossRefGoogle Scholar
  11. 11.
    Chow TWS, Feng JC, Ng KT (2000) An adaptive demodulator for the chaotic modulation communication system with rbf neural network. IEEE Trans Circuits Syst I Fundam Theory Appl 47:902–909CrossRefGoogle Scholar
  12. 12.
    Cuomo KM (1993) Circuit implementation of synchronized chaos with applications to communication. Phys Rev Lett 71:65–68CrossRefGoogle Scholar
  13. 13.
    Kennedy MP, Kolumbán, G (2000) Special issue on noncoherent chaotic communications. IEEE Trans Circuits Syst I Fundam Theory Appl 47:1661–1662Google Scholar
  14. 14.
    Hu Z, Chen X (2006) Synchronization of chaotic cryptosystems based on Chua’s circuits with key functions. Dynam Contin Discrete Impulsive Syst A Math Anal 13:489–49Google Scholar
  15. 15.
    Pizolato JC, Romero MA, Neto LG (2008) Chaotic communication based on the particle-in-a-box electronic circuit. IEEE Trans Circuits Syst I Fundam Theory Appl 55:1108–1115MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cuomo KM, Oppenheim AV, Strogetz SH (1993) Synchronization of Lorenz-based chaotic circuits with application to communications. IEEE Trans Circuits Syst II Analog Digit Process 40:626–633CrossRefGoogle Scholar
  17. 17.
    Lindberg E, Bumeliene S (2008) Analog electrical circuit for simulation of the duffing-holmes equation. Nonlinear Anal Model Control 13:241–252MATHGoogle Scholar
  18. 18.
    Kis G, Jákó Z, Kennedy MP, Kolumbán G (1998) Chaotic communications without synchronization. In: Proceedings 6th IEE conference telecommunication, Edinburgh, UK, pp 49–53Google Scholar
  19. 19.
    Banerjee S, Chakrabarty K (1998) Nonlinear modeling and bifurcation in boost converter. IEEE Trans Power Electron 13:252–260CrossRefGoogle Scholar
  20. 20.
    Cheng KWE, Liu M, Wu J, Cheung NC (2001) Study of bifurcation and chaos in the current-mode controlled buck-boost dc-dc converter. In: IECON’01: the 27th annual conference of the IEEE industrial electronics society, pp 838–843Google Scholar
  21. 21.
    Banerjee S, Baranovski AL, Marrero JLR, Woywode O (2002) Minimizing electromagnetic interference problems with chaos. IEICE Trans 85:1–11Google Scholar
  22. 22.
    Kennedy MP (1993) Three steps to chaos-part-I: evolution. IEEE Trans Circuits Syst I Fundam Theory Appl 40:640–656CrossRefGoogle Scholar
  23. 23.
    Kennnedy MP (1992) Robust OPAMP realization of chua’s circuit. Int J Frequen 46:66–80Google Scholar
  24. 24.
    Zhong GQ, Ayrom F (1985) Experimental confirmation of chaos from chua’s circuit. Int J Circuit Theory Appl 13:93–98CrossRefGoogle Scholar
  25. 25.
    Matsumoto T, Chua L, Tokumasu K (1986) Double Scroll via a two-transistor circuit. IEEE Trans Circuits Syst 33:828–835MathSciNetCrossRefGoogle Scholar
  26. 26.
    Cruz JM, Chua LO (1992) A CMOS IC nonlinear resistor for chua’s circuit. IEEE Trans Circuits Syst I Fundam Theory Appl 39:985–995CrossRefGoogle Scholar
  27. 27.
    Kennedy MP (1993) Three steps to chaos-part-II: evolution. IEEE Trans Circuits Syst. I Fundam Theory Appl 40:657–674CrossRefGoogle Scholar
  28. 28.
    Deane JHB, Hamill DC (1990) Instability, sub-harmonics, and chaos in power electronics circuits. IEEE Trans Power Electron 5:260–268CrossRefGoogle Scholar
  29. 29.
    Banerjee S, Poddar G, Chakrabarty K (1996) Bifurcation behavior of buck converter. IEEE Trans Power Electron 11:437–439Google Scholar
  30. 30.
    Hamill DC, Deane JHB, Jefferies DJ (1992) Modeling of chaotic dC–dC converters by iterated nonlinear mappings. IEEE Trans Power Electron 7:25–36CrossRefGoogle Scholar
  31. 31.
    Thukral MK, Sherpa KS (2013) Chaotic modulation-based spread spectrum communication using complex dynamics of chaotic dC–dC current mode controlled boost converter. Int J Secur Commun Netw 6:1053–1063CrossRefGoogle Scholar
  32. 32.
    Stavroulakis P (2005) Chaos applications in telecommunication. CRC PressGoogle Scholar
  33. 33.
    Rohde GK, Nichols JM, Bucholtz F. Chaotic signal detection and estimation based on attractor sets: applications to secure communications. Int J Chaos 18Google Scholar
  34. 34.
    Cummings FE (1977) The particle in a box is not simple. Amer J Phys 45:158–160CrossRefGoogle Scholar
  35. 35.
    Eisencraft M, Kato DM, Monteiro LHA (2010) Spectral properties of chaotic signals generated by the skew tent map. J Signal Processing 90:385–390CrossRefGoogle Scholar
  36. 36.
    Galleani L, Biey M, Gilli M, Presti LL (1999) Analysis of chaotic signals in the time-frequency plane. In: Conference proceedings of the ieee-eurasip workshop on nonlinear signal and image processing (nsip’99). Antalya, Turkey, June 20–23Google Scholar
  37. 37.
    Fodjouong GJ, Fotsin HB, Woafo P (2007) Synchronization modified van der pol-duffing oscillators with offset terms using observer design: application to secure communications. Phys Scrip 75:638–644CrossRefGoogle Scholar
  38. 38.
    Kocarev L, Halle K, Eckert K, Chua LO, Parlitz U (1992) Experimental demonstration of secure communications via chaotic synchronization. Int J Bifurc Chaos 2:709–713CrossRefGoogle Scholar
  39. 39.
    Pecora LM, Caroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–825MathSciNetCrossRefGoogle Scholar
  40. 40.
    Sobiski DJ, Thorp JS (1998) PDMA-1: chaotic communication via the extended kalman filter. IEEE Trans Circuits Syst I Fundam Theory Appl 45Google Scholar
  41. 41.
    Feldmann U, Hasler M, Schwarz A (1996) Communication by chaotic signals: the inverse system approach. Inte J Circuit Theory Appl 24:551–579CrossRefGoogle Scholar
  42. 42.
    Dedieu H, Kennedy MP, Hasler M (1993) Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing chua’ s circuits. IEEE Trans Circuits Syst II Analog Digit Signal Process 40CrossRefGoogle Scholar
  43. 43.
    Hayes S, Grebogi C, Ott E (1993) Communicating with chaos. Phys Rev Lett 70:3031–3034CrossRefGoogle Scholar
  44. 44.
    Kolumb´an G, Kennedy MP, Chua LO (1998) The role of synchronization in digital communications using chaos—part II: chaotic modulation and chaotic synchronization. IEEE Trans Circuits Syst I Fundam Theory Appl 45Google Scholar
  45. 45.
    Tse CK, Lau FCM (2003) A return map regression approach for non-coherent detection in chaotic digital communications. Int J Bifurc Chaos 13:685–690CrossRefGoogle Scholar
  46. 46.
    Thukral MK, Sherpa KS, Garg K (2016) Design of a robust receiver for chaotic switching maps of dc-dc power electronics transmitter converters for secure communication. J Secur Commun Netw 9:4404–4415Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manish Kumar Thukral
    • 1
  • Karma Sonam Sherpa
    • 2
  • Kumkum Garg
    • 1
  1. 1.Manipal University JaipurDahmi Kalan, JaipurIndia
  2. 2.Sikkim Manipal Institute of TechnologyMajhitarIndia

Personalised recommendations