DOA Estimation of Coherent Sources Using QPSO in WSN

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)

Abstract

Here we formulate the problem of direction of arrival (DOA) estimation of correlated sources when single snapshot is available in wireless sensor network (WSN). A computationally inexpensive fitness function is used instead of maximum likelihood for DOA estimation of correlated signals. In order to achieve faster convergence, the quantum particle swarm optimization (QPSO) algorithm is proposed to optimize the cost function. The performance of QPSO is analyzed and compared with particle swarm optimization (PSO). Simulation results indicate that the QPSO algorithm provides better estimation accuracy and faster convergence rate compared to PSO algorithm.

Keywords

Wireless sensor network Quantum particle swarm optimization DOA estimation Correlated source localization 

References

  1. 1.
    Rawat P, Singh KD, Chauchi H, Bonnin JM (2014) Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomput 68(1):1–48CrossRefGoogle Scholar
  2. 2.
    Krim H, Viberg M (1996) Two decades of array signal processing research: the parametric approach. IEEE Signal Process Mag 13(4):67–94CrossRefGoogle Scholar
  3. 3.
    Shan TJ, Wax M, Kailath T (1985) On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans Acoust Speech Signal Process 33(4):806–811CrossRefGoogle Scholar
  4. 4.
    Gan L, Luo X (2013) Direction-of-arrival estimation for uncorrelated and coherent signals in the presence of multipath propagation. IET Microwaves Antennas Propag 7(9):746–753CrossRefGoogle Scholar
  5. 5.
    Chen H, Hou CP, Wang Q, Huang L, Yan WQ (2014) Cumulants-based Toeplitz matrices reconstruction method for 2-D coherent DOA estimation. IEEE Sens J 14(8):2824–2832CrossRefGoogle Scholar
  6. 6.
    Hacker P, Yang B (2010) Single snapshot DOA estimation. Adv Radio Sci 8:251–256CrossRefGoogle Scholar
  7. 7.
    Fortunati S, Grasso R, Gini F, Greco MS, LePage K (2014) Single-snapshot DOA estimation by using compressed sensing. EURASIP J Adv Signal Process 2014(1):120CrossRefGoogle Scholar
  8. 8.
    Errasti-Alcala B, Fernandez-Recio R (2012) On the use of particle swarm optimization for single snapshot DOA and frequency estimation. In: 6th European conference on antennas and propagation (EUCAP), pp 3635–3639Google Scholar
  9. 9.
    Errasti-Alcala B, Fernandez-Recio R (2013) Performance analysis of metaheuristic approaches for single-snapshot DOA estimation. IEEE Antennas Wirel Propag Lett 12:166–169CrossRefGoogle Scholar
  10. 10.
    Panigrahi T, Roula S, Gantayat H (2016) Application of comprehensive learning particle swarm optimization algorithm for maximum likelihood DOA estimation in wireless sensor networks. Int J Swarm Intel 2Google Scholar
  11. 11.
    Panigrahi T, Panda G, Majhi B (2013) Maximum likelihood source localization in wireless sensor network using particle swarm optimization. Int J Signal Imag Syst Eng 6(2):83–90CrossRefGoogle Scholar
  12. 12.
    Sun J, Xu W, Feng B (2004) A global search strategy of quantum-behaved particle swarm optimization. In: IEEE conference on cybernetics and intelligent systems 1:111–116Google Scholar
  13. 13.
    Sun J, Xu W, Fang W (2006) Quantum-behaved particle swarm optimization algorithm with controlled diversity. Springer, Berlin, HeidelbergCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of E.C.ENational Institute of Technology GoaFarmagudiIndia

Personalised recommendations