Slow-Light Enhanced Second Harmonic Generation in Lithium Niobate Photonic Crystal Waveguides

  • Zaineb Gharsallah
  • Makni Sana
  • Monia Najjar
  • Vijay Janyani
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)

Abstract

In this research study, we propose a slow-light-based photonic crystal waveguide consisting of a combination of circular and elliptic airholes with a background material of lithium niobate LiNbO3 (refractive index n = 2.211). By modifying the radii of the closest row to the waveguide in each side, we demonstrate a high value of normalized delay-bandwidth product, equal to 0.60. Using finite-difference time-domain method (FDTD), a significant increase of second harmonic generation efficiency of about 0.14 at a moderate power is observed when analyzing the nonlinear performance of the designed slow-light structure.

Keywords

Slow light NDBP Photonic crystal waveguide Nonlinear effects Second harmonic generation 

References

  1. 1.
    Krauss TF (2008) Why do we need slow light? Nat Photon 2:448CrossRefGoogle Scholar
  2. 2.
    Li J, White TP, Faolain LO, Gomez-Iglesias A, Krauss TF (2008) Systematic design ofat band slow light in photonic crystal waveguides. Opt Express 16:622–6232Google Scholar
  3. 3.
    Baba T (2008) Slow light in photonic crystals. Nat Photon 2:465–473Google Scholar
  4. 4.
    Alibart O, Auria V, Micheli M et al (2016) Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J Opt Inst Phys (IOP) 18(10):104001Google Scholar
  5. 5.
    Krauss TF (2007) Slow light in photonic crystal waveguides. J Phys D: Appl Phys 2666–2670Google Scholar
  6. 6.
    Rsoft software. https://optics.synopsys.com/rsoft/. Version 2014
  7. 7.
    Mirjalili SM, Kambiz A (2012) Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide. In: Photonics global conferenceGoogle Scholar
  8. 8.
    Janrao N, Zafar R, Vijay J (2012) Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance. Opt Eng 51(6):064001–064007CrossRefGoogle Scholar
  9. 9.
    Sharma A, Mukesh K (2015) Flat band slow light in silicon photonic crystal waveguide with large delay bandwidth product and low group velocity dispersion. IET Opt 9(1):24–28Google Scholar
  10. 10.
    Zaineb G, Monia N, Vijay J (2016) Slow light optimization in symmetric photonic crystal waveguide with elliptical holes. In: 22nd Asia-Pacific conference on communications, pp 144–147Google Scholar
  11. 11.
    Coquillat D, Vecchi G, Comaschi C, Malvezzi AM, Torres J, dYerville ML (2005) Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal. Appl Phys Lett 873Google Scholar
  12. 12.
    Diziain S, Geiss R, Zilk M, Schrempel F, Kley E, Tünnermann A, Pertsch T (2013) Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity. Appl Phys Lett 103Google Scholar
  13. 13.
    Sana M, Monia N, Taoufik A (2016) Optimisation of second harmonic generation using photonic crystal cavity. In: 22nd Asia-Pacific conference on communicationsGoogle Scholar
  14. 14.
    de Dood MJA (2006) Second-harmonic generation. Huygens Laboratorium 909aGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zaineb Gharsallah
    • 1
    • 3
  • Makni Sana
    • 1
  • Monia Najjar
    • 1
    • 2
  • Vijay Janyani
    • 3
  1. 1.National Engineering School of Tunis Communications Systems Laboratory (SysCom)University of Tunis El ManarArianaTunisia
  2. 2.Higher Institute of Computer Science of El Manar (ISI)University of Tunis El ManarArianaTunisia
  3. 3.Department of Electronics & CommunicationMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations