Multi-material Photonic Crystal Fiber in MIR Region for Broadband Supercontinuum Generation

  • Shruti Kalra
  • Sandeep Vyas
  • Manish Tiwari
  • Ghanshyam Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)


In this paper, we have numerically investigated a multi-material photonic crystal fiber and simulated 1.6–4.2 µm mid-infrared supercontinuum generation. This mid-infrared broadband supercontinuum is observed for photonic crystal fiber of 100 mm length, when pumped with 85 fs laser pulses operating at 2.5 µm and peak power pulse is 350 W. The design of photonic crystal fiber with borosilicate and As2S3 glass has broad and flat dispersion profile with two zero dispersion wavelengths and high nonlinearity which helps in the generation of broadband supercontinuum.


PCF (Photonic crystal Fiber) Chromatic dispersion Aeff (Effective mode area) Supercontinuum generation (SCG) 



The research work proposed in the paper is the carried out under the collaborative activity of the faculty members of Malaviya National Institute of Technology, Jaipur, and Manipal University, Jaipur.


  1. 1.
    Barh A, Ghosh S, Agrawal GP, Varshney RK, Aggarwal ID, Pal BP (2013) Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study. J Opt 15:035205CrossRefGoogle Scholar
  2. 2.
    Barh A, Ghosh S, Varshney RK, Pal BP (2013) An efficient broadband mid-wave IR fiber optic light source: design and performance simulation. Opt Express 21:9547–9555CrossRefGoogle Scholar
  3. 3.
    Dudley JM, Gentry G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Modern Phys 78(4):1135–1184CrossRefGoogle Scholar
  4. 4.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Ultraflat broadband supercontinuum in highly nonlinear Ge11.5As24Se64.5 photonic crystal fibres. Ukr J Phys Opt 17:132–139CrossRefGoogle Scholar
  5. 5.
    Tamura KR, Kubota H, Nakazawa M (2000) Fundamentals of stable continuum generation at high repetition rates. IEEE J Quantum Electron 36:773–779CrossRefGoogle Scholar
  6. 6.
    Hult J, Watt RS, Kaminski CF (2007) High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt Express 15:11385–11395CrossRefGoogle Scholar
  7. 7.
    Kaminski CF, Watt RS, Elder AD, Frank JH, Hult J (2008) Supercontinuum radiation for applications in chemical sensing and microscopy. Appl Phys B 92:367–378CrossRefGoogle Scholar
  8. 8.
    Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 26:608–610CrossRefGoogle Scholar
  9. 9.
    Shi K, Li P, Liu Z (2007) Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap. Appl Phys Lett 90:141116CrossRefGoogle Scholar
  10. 10.
    Morioka T, Kawanishi S, Mori K, Saruwatari M (1994) Transformlimited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum. Electron Lett 30:1166–1168CrossRefGoogle Scholar
  11. 11.
    Reichert J, Udem T, Hänsch TW, Knight JC, Wadsworth WJ, Russell PStJ (2000) Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett 85:2264–2267Google Scholar
  12. 12.
    Russell PStJ (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749Google Scholar
  13. 13.
    Saitoh K, Koshiba M, Mortensen NA (2006) Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible. New J Phys 8:207–215CrossRefGoogle Scholar
  14. 14.
    Cardinal T, Richardson KA, Shim H, Schulte A, Beatty R, Le Foulgoc K, Meneghini C, Viens JF, Villeneuve A (1999) Non-linear optical properties of chalcogenide glasses in the system As-S-Se. J Non-Cryst Solids 256:353–360CrossRefGoogle Scholar
  15. 15.
    Zakery A, Elliott SR (2003) Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids 330:1–12CrossRefGoogle Scholar
  16. 16.
    Boudebs G, Cherukulappurath S, Guignard M, Troles J, Smektala F, Sanchez F (2004) Linear optical characterization of chalcogenide glasses. Opt Commun 230:331–336CrossRefGoogle Scholar
  17. 17.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Chin Opt Lett 14:123201CrossRefGoogle Scholar
  18. 18.
    Gander MJ, McBride R, Jones JDC, Mogilevtsev D, Birks TA, Knight JC, Russell PStJ (1999) Experimental measurement of group velocity dispersion in photonic crystal fibre. Electron Lett 35:63–64Google Scholar
  19. 19.
    Ferrando A, Silvestre E, Andrés P, Miret JJ, Andrés MV (2001) Designing the properties of dispersion flattened photonic crystal fibers. Opt Express 9:687–697CrossRefGoogle Scholar
  20. 20.
    Reeves WH, Knight JC, Russell PStJ, Roberts PJ (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10:609–613CrossRefGoogle Scholar
  21. 21.
    Dudley JM, Taylor JR (2010) Supercontinuum generation in optical fibers. CambridgeGoogle Scholar
  22. 22.
    Heidt AM (2010) Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt Soc Am B 27:550–559CrossRefGoogle Scholar
  23. 23.
    Maji PS, Chaudhuri PR (2015) Design of all-normal dispersion based on multi-material photonic crystal fiber in IR region for broadband supercontinuum generation. Opt Soc Am 54:4042–4048Google Scholar
  24. 24.
    Agarwal GP (2007) Nonlinear fiber optics, 4th edn. AcademicGoogle Scholar
  25. 25.
    Vyas S, Tanabe T, Singh G, Tiwari M (2016) Broadband supercontinuum generation and Raman response in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference on computational techniques in information and communication technologies (ICCTICT), pp 607–611.
  26. 26.
    Salem AB, Cherif R, Zghal M (2011) Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber. Progress in electromagnetics research symposium proceedings, pp 20–23. Marrakesh, MoroccoGoogle Scholar
  27. 27.
    Kärtner FX, Dougherty DJ, Haus HA, Ippen EP (1994) Raman noise and soliton squeezing. J Opt Soc Am B 11:1267–1276CrossRefGoogle Scholar
  28. 28.
    Vyas S, Tanabe T, Tiwari M, Singh G (2016) Mid-infrared supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference advances in computing, communications and informatics (ICACCI), pp 2547–2552.
  29. 29.
    Yuan W (2013) 2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber. Laser Phys Lett 10:095107CrossRefGoogle Scholar
  30. 30.
    Wei D-P, Galstian TV, Smolnikov IV, Plotnichenko VG, Zohrabyan A (2005) Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber. Opt Express 13:2439–2443CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shruti Kalra
    • 1
  • Sandeep Vyas
    • 1
  • Manish Tiwari
    • 2
  • Ghanshyam Singh
    • 3
  1. 1.Department of ECEJaipur Engineering College & Research CentreJaipurIndia
  2. 2.Department of ECEManipal UniversityJaipurIndia
  3. 3.Department of ECEMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations