Advertisement

Quantum Well Width Effect on Intraband Optical Absorption in Type-II InAs/AlSb Nano-Scale Heterostructure

  • Nisha Yadav
  • Garima Bhardwaj
  • S. G. Anjum
  • K. Sandhya
  • M. J. Siddiqui
  • P. A. Alvi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)

Abstract

In this paper, we have studied theoretically the effect of width variation of quantum well on energy dispersion curves and transverse electric (TE) and transverse magnetic (TM) Intraband optical absorption coefficients in type-II InAs/AlSb nanoscale heterostructure by utilizing eight bands Kohn–Luttinger Hamiltonian. The outcomes of the calculations made in this work suggest that the optical absorption and transition energies can be enhanced by reducing the width of quantum well (active) region of the designed heterostructure. One more observation is that the polarization modes have no effect on the behaviour of change in transition energy with change in well width.

Keywords

InAs AlSb Heterostructure Optical absorption Intraband transition 

Notes

Acknowledgements

P. A. Alvi and Nisha Yadav are grateful to “Banasthali Center for Research and Education in Basic Sciences” under CURIE programme supported by the DST, Government of India, New Delhi. Authors are also thankful to Dr. Konstantin I. Kolokolov (Physics Department, Moscow State University, Moscow, Russia) for supporting the research work.

References

  1. 1.
    Moschetti G, Zhao H, Nilsson P-Å, Wang S, Kalabukhov A, Dambrine G, Bollaert S, Desplanque L, Wallart X, Grahn J (2010) Anisotropic transport properties in InAs/AlSb heterostructures. Appl Phys Lett 97:243510CrossRefGoogle Scholar
  2. 2.
    Bennett BR, Magno R, Boos JB, Kruppa W, Ancona MG (2005) Antimonide-based compound semiconductors for electronic devices: a review. Solid State Electron 49:1875CrossRefGoogle Scholar
  3. 3.
    Klokolov KI, Ning CZ (2003) Doping induced type-II to type-I transition and interband optical gain in InAs/AlSb quantum wells. Appl Phys Lett 83(8):1581Google Scholar
  4. 4.
    Ren S-F, Shen J (1997) Ab initio pseudopotential calculations of InAs/AlSb heterostructures. J Appl Phys 81:1169CrossRefGoogle Scholar
  5. 5.
    Alvi PA (2017) Transformation of type-II InAs/AlSb nano-scale heterostructure into type-I structure and improving interband optical gain. Phys Status Solidi B.  https://doi.org/10.1002/pssb.201600572
  6. 6.
    Alvi PA, Gupta S, Sharma M, Jha S, Rahman F (2011) Computational modeling of novel InN/Al0.30 In0.70 N multilayer nano-heterostructure. Physics E 44:49Google Scholar
  7. 7.
    Nirmal HK, Yadav N, Rahman F, Alvi PA (2015) Optimization of high optical gain in type-II In0.70 Ga0.30 As/GaAs0.40Sb0.60lasing nano-heterostructure for SWIR applications. Superlattices and Microstruct 88:154–160Google Scholar
  8. 8.
    Chuang SL (1995) Physics of optoelectronic devices. Wiley, NYGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nisha Yadav
    • 1
  • Garima Bhardwaj
    • 2
  • S. G. Anjum
    • 3
  • K. Sandhya
    • 1
  • M. J. Siddiqui
    • 3
  • P. A. Alvi
    • 1
  1. 1.Department of PhysicsBanasthali UniversityRajasthanIndia
  2. 2.Department of ElectronicsBanasthali UniversityRajasthanIndia
  3. 3.Department of Electronics, F/o Engineering and TechnologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations