Performance Analysis of Atmospheric Conditions Over Terrestrial Free-Space Optical Communication

  • Vaishali
  • Sandeep Sancheti
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)


In this investigation, relation between bit error rate (BER) versus atmospheric effect present in the channel has been analyzed for free-space optical communication (FSO) system. This paper deals with the performance evaluation of BER with respect to different atmospheric conditions. A terrestrial FSO link is designed that offers high data rate optical communication system. Absorption, scattering, and turbulence are the three major adverse effects present in the atmosphere that cause serious degradation in the performance of BER that may lead to communication link inoperable. During this analysis, a relation between minimum BER, optical power of laser, and link distance would be observed.


Free-space optical communication Optical wireless communication Scintillation Line of sight Laser 


  1. 1.
    Khalighi MA, Uysal M (2014) survey on free space optical communication: a communication theory perspective. IEEE Commun Surv Tutor 16(4). IEEE PressGoogle Scholar
  2. 2.
    Zhou D, LoPresti PG, Refai HH (2011) Enlargement of beam coverage in FSO mobile network. J Lightwave Technol 29(10). IEEE PressGoogle Scholar
  3. 3.
    Sharma D, Khan SA, Singh S (2015) Literature survey and issue on free space optical communication system. Int J Eng Res Technol 4(02), IJERTGoogle Scholar
  4. 4.
    Henniger H, Wilfert O (2010) An introduction to free space optical communication. Radioengineering 19(2). IEEE PressGoogle Scholar
  5. 5.
    Kedar D, Arnon S (2004) Urban optical wireless communication network: the main challenges and possible solutions. IEEE Opt Commun. IEEE PressGoogle Scholar
  6. 6.
    Anguita JA, Cisternas JE (2010) Experimental evaluation of transmitter and receiver diversity in a terrestrial FSO link, In: IEEE globecom workshop on optical wireless communicationsGoogle Scholar
  7. 7.
    Borah DK, Boucouvalas AC, Davis CC, Hranilovic S, Yiannopoulos K (2012) A review of communication-oriented optical wireless systems. J Wirel Commun Netw. IEEE PressGoogle Scholar
  8. 8.
    Zhu X, Kahn JM (2002) Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 50(8). IEEE PressGoogle Scholar
  9. 9.
    Soni G, Malhotra JS (2012) Impact of beam divergence on the performance of free space optical system. Int J Sci Res Publ 2(2), IJSRPGoogle Scholar
  10. 10.
    Hulea M, Ghassemlooy Z, Rajbhandari S, Tang X (2014) Compensating for optical beam scattering and wandering in FSO communications. J Lightwave Technol 32(7). IEEE PressGoogle Scholar
  11. 11.
    Kora AD, Hontinfinde R, Ouattara T (2015) Free space optics attenuation model for visibilities ranging from 9 to 12 Km. Elsevier Sci Direct Proced Comput Sci 56, Science DirectGoogle Scholar
  12. 12.
    Yang L, Gao X, Alouini M-S (2014) Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels. IEEE Photonics J 6(2). IEEE PressGoogle Scholar
  13. 13.
    Usman M, Yang H-C, Alouini M-S (2014) Practical switching-based hybrid FSO/RF transmission and its performance analysis. IEEE Photonics J 6(5). IEEE PressGoogle Scholar
  14. 14.
    Bekkali A, Ben Naila C, Kazaura K, Wakamori K, Matsumoto M (2010) Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modelled by gamma–gamma distribution. IEEE Photonics J 2(3). IEEE PressGoogle Scholar
  15. 15.
    Chan VWS (2006) Free-space optical communications. J Lightwave Technol 24(12). IEEE PressGoogle Scholar
  16. 16.
    Garg N, Kumar S (2013) Design of free space optical communication link with mach-zehnder optical modulator for long distance. In: 4th ICCCNT. IEEE PressGoogle Scholar
  17. 17.
    Reinhardt C, Kuga Y, Jaruwatanadilok S, Ishimaru A (2009) Improving bit-error-rate performance of the free-space optical communications system with channel estimation based on radiative transfer theory. IEEE J Sel Areas Commun 27(9). IEEE PressGoogle Scholar
  18. 18.
    Zhu B, Cheng J, Wu L (2015) A distance-dependent free-space optical cooperative communication system. IEEE Commun Lett 19(6)Google Scholar
  19. 19.
    Awan MS, Csurgai Horwath L, Muhammad SS, Leitgeb E, Nadeem F, Khan MS (2009) Characterization of fog and snow attenuations for free-space optical propagation. J Commun 4(8). IEEE PressGoogle Scholar
  20. 20.
    Ali MAA (2014) Analysis of data rate for free space optical communications system. Int J Electron Commun Technol 5(Spl-1), IJECTGoogle Scholar
  21. 21.
    Navidpour SM, Uysal M, Kavehrad M (2007) BER performance of free space optical transmission with spatial diversity. IEEE Trans Wirel Commun 6(8). IEEE PressGoogle Scholar
  22. 22.
    Sahbudin RKZ, Chun TTK, Anas SBA, Hitam S, Mokhtar M (2015) SAC-OCDMA over hybrid FTTx free space optical communication networks. J Telecommun Inf TechnolGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ECEManipal University JaipurJaipurIndia

Personalised recommendations