Advertisement

First-Principle Calculations of Optical Properties of LiInTe2 at Different Pressures

  • S. Chandra
  • V. Kumar
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)

Abstract

First-principle calculations are performed to calculate the values of dielectric constant, refractive index, and energy-loss spectra for LiInTe2 semiconductor at different pressures. The calculated values are compared with available experimental and reported values. A fairly good agreement has been obtained between them.

Keywords

First-principle calculations Optical properties 

References

  1. 1.
    Parthe E (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, New YorkGoogle Scholar
  2. 2.
    Goryunova NA (1965) The chemistry of diamond-like semiconductors. Chapman and Hall, New YorkGoogle Scholar
  3. 3.
    Shay JL, Schiavone LM, Buehier E, Wernick JH (1972) Spontaneous and stimulated emission spectra of CdSnP2. J Appl Phys 43:2805–2810.  https://doi.org/10.1063/1.1661599CrossRefGoogle Scholar
  4. 4.
    Wagner S, Shay JL, Tell B, Kasper HM (1973) Green electroluminescence from CdS–CuGaS2 heterodiodes. Appl Phys Lett 22:351.  https://doi.org/10.1063/1.1654669CrossRefGoogle Scholar
  5. 5.
    Magesh M, Arunkumar A, Vijayakumar P, Anandha Babu G, Ramasamy P (2014) Investigation of optical property in LiInSe2 single crystal grown by Bridgman Stockbarger method using stepper translations for mid IR laser application. Opt Laser Technol. 56:177–181. http://dx.doi.org/10.1016/j.optlastec.2013.08.003CrossRefGoogle Scholar
  6. 6.
    Kazmerski LL(1983) Ternary-compound thin-film solar cells. II Nuovo Cimento D 2:2013–2028.  https://doi.org/10.1007/BF02457903CrossRefGoogle Scholar
  7. 7.
    Levine BF (1973) Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys Rev B 7:2600–2626CrossRefGoogle Scholar
  8. 8.
    Hopkius FK (1995) Laser Focus World 31:87Google Scholar
  9. 9.
    Shay JL, Wernick TH (1975) Ternary chalcopyrite semiconductors: growth, electrical properties and applications. Pergamon, OxfordCrossRefGoogle Scholar
  10. 10.
    Boeknke UC, Kuhu G, Frolova FI, Paukov IE, Neumann H (1988) Heat capacity of LiInTe2. J Thermal Anal 33:205–209.  https://doi.org/10.1007/BF01914601
  11. 11.
    Hönle W, Kühn G, Neumann H (1986) The crystal structure of LiInTe2. Zeit Annorg Allg Chem 532:150–156.  https://doi.org/10.1002/zaac.19865320121
  12. 12.
    Kosobutsky AV, Basalaev YuM (2010) First principles study of electronic structure and optical properties of LiMTe2 (M = Al, Ga, In) crystals. J Phys Chem Solids 71:854–861.  https://doi.org/10.1016/j.jpcs.2010.03.033CrossRefGoogle Scholar
  13. 13.
    Kosobutsky AV, Basalaev YuM, Poplavnoi AS (2009) Lattice dynamics of chalcopyrite semiconductors LiAlTe2, LiGaTe2 and LiInTe2. Phys Status Solidi B 246:364–371.  https://doi.org/10.1002/pssb.200844283
  14. 14.
    Ma C-G, Brik MG (2015) First principles studies of the structural, electronic and optical properties of LiInSe2 and LiInTe2 chalcopyrite crystals. Solid State Commun. 203:69–74. http://dx.doi.org/10.1016/j.ssc.2014.11.021CrossRefGoogle Scholar
  15. 15.
    Reshak AH, Brik MG (2016) Strong second harmonic generation in LiInX2 (X = Se, Te) chalcopyrite crystals as explored by first-principles methods. J Alloys Compds 675:355–363. http://dx.doi.org/10.1016/j.jallcom.2016.03.104CrossRefGoogle Scholar
  16. 16.
    Sheldrick GM: SHELXTL. Cambridge 1975, unverfoffentlichtGoogle Scholar
  17. 17.
    Busing WR, Martin’ KD, Levy JA (1974) ORFEE-3 ORNL-TM-306, Oak Ridge, Tenn. Oak Ridge National. Laboratory, USAGoogle Scholar
  18. 18.
    Segall MD, Philip JD, Lindan MJ, Probert CJ, Pickard PJ, Hasnip S, Clark J, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2743. http://iopscience.iop.org/article/10.1088/0953-8984/14/11/301Google Scholar
  19. 19.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3869CrossRefGoogle Scholar
  20. 20.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  21. 21.
    Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  22. 22.
    Penn DR (1960) Phys Rev 128:2093–2097CrossRefGoogle Scholar
  23. 23.
    Moss TS (1950) A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc Phys Soc B 63:167–176. doi:http://iopscience.iop.org/article/10.1088/0370-1301/63/3/302CrossRefGoogle Scholar
  24. 24.
    Bouhemadou A, Khenata R (2007) Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Comput Mater Sci 39:803–807CrossRefGoogle Scholar
  25. 25.
    Saniz R, Ye LH, Shishidou T, Freeman AJ (2006) Structural, electronic, and optical properties of NiAl3: First-principles calculations. Phys Rev B 74:014209–1: 014209–7.  https://doi.org/10.1103/PhysRevB.74.014209
  26. 26.
    Ma T-H, Zhuang Z-P, Ren Y-L (2012) First-principles calculations of optical and mechanical properties of LiBX2 (B = Ga, In; X = S, Se, Te). Acta Phys Sin 61:197101.  https://doi.org/10.7498/aps.61.197101

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations