Mach–Zehnder Interferometer-Based 3-Bit All-Optical Sequence Detector

  • Rakesh Ranjan
  • Abhishek Ranjan
  • Dharmendra Kumar Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)


All-optical devices can support high data rate in a communication system compared with its electronic counterparts. Several all-optical logic devices can be implemented using Mach–Zehnder interferometers (MZIs). The MZI structure uses electro-optic effect to switch light across the titanium-diffused lithium niobate optical waveguide from cross-state to bar-state and vice versa. Sequence detector is a significant sequential circuit that detects the presence of predefined bit sequence in the input bit stream. The paper presents an all-optical 3-bit sequence detector that detects the bit sequence 110 from the main bit stream. The operations of the proposed device are analysed and verified using OptiBPM software. This all-optical device could be deployed in several optical switching and networking operations.


Mach–Zehnder interferometer Electro-optic effect Titanium-diffused LiNbO3 Beam propagation method Optical sequence detection 


  1. 1.
    Kaur S, Kaler RS (2012) Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier. J Opt Soc Korea 16:13–16CrossRefGoogle Scholar
  2. 2.
    Kaur S, Kaler RS (2014) All optical SR and D flip-flop employing XGM effect in semiconductor optical amplifiers. Optik—Int J Light Electron Opt 125:865–869CrossRefGoogle Scholar
  3. 3.
    Pallavi S, Tripathi DK, Jaiswal S, Dixit HK (2014) All-optical logic gates: designs, classification, and comparison. Adv Opt Technol 2014:1–13Google Scholar
  4. 4.
    Singh G, Janyani V, Yadav RP (2012) Modeling of a high performance Mach-Zehnder interferometer all optical switch. Optica Applicata 42:613–625Google Scholar
  5. 5.
    Raghuwanshi SK, Kumar A, Chen NK (2014) Implementation of sequential logic circuits using the Mach-Zehnder interferometer structure based on electro-optic effect. Opt Commun 333:193–208CrossRefGoogle Scholar
  6. 6.
    Kumar S, Raghuwanshi SK, Kumar A (2013) Implementation of optical switches using Mach-Zehnder interferometer. Opt Eng 52:1–9Google Scholar
  7. 7.
    Kumar A, Kumar S, Raghuwanshi SK (2014) Implementation of XOR/XNOR and AND logic gates by using Mach-Zehnder interferometers. Optik—Int J Light Electron Opt 125:5764–5767CrossRefGoogle Scholar
  8. 8.
    Kumar S, Singh G, Bisht A, Amphawan A (2015) A design of D flip-flop and T flip-flop using Mach-Zehnder interferometers for high-speed communication. Appl Opt 54:6397–6405CrossRefGoogle Scholar
  9. 9.
    Murphy EJ, Adda TF, Minford WJ, Irvin RW, Ackerman EI, Adams SB (1996) Guided-wave optical time delay network. IEEE Photon Technol Lett 8:545–547CrossRefGoogle Scholar
  10. 10.
    Chattopadhyay T, Reis C, Andre P, Teixeira A (2012) Theoretical analysis of all-optical clocked D flip-flop using a single SOA assisted symmetric MZI. Opt Commun 285:2266–2275CrossRefGoogle Scholar
  11. 11.
    Wartek MS (2013) Computational photonics—an introduction with MATLAB, pp 288–315. Cambridge University PressGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rakesh Ranjan
    • 1
  • Abhishek Ranjan
    • 1
  • Dharmendra Kumar Singh
    • 1
  1. 1.OFC and Photonics Laboratory, Department of Electronics and Communication EngineeringNational Institute of TechnologyPatnaIndia

Personalised recommendations