Magneto-Optical Tuning of Refractive Index for Bidispersed Ferrofluid

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 472)


Refractive index of Bidispersed ferrofluid (BDF) changes with the external magnetic field during light transport. BDF is the most appropriate “liquid magnet” for the magnetic modulation. BDF is composed of micrometer-sized magnetic sphere dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a non-magnetic liquid carrier. The variation in the relative refractive index (RRI) of BDF was studied as a function of external magnetic field. RRI increases with external magnetic field and saturates. Probability of such behavior of RRI is extinction of light. Probable reason of extinction like Mie resonance, optical limiting, and magnetic-hole theory is discussed. The study gives better insight about the role of RRI in extinction of light for BDF, which is governing factor in light.


Magnetic fluid Refractive index Mie resonance Optical limiting 


  1. 1.
    Haes J, Van Duyne RP (2002) A nanooptical biosensor: sensitivity of an approach based on the localised surface plasmons resonance spectroscopy of triangle silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  2. 2.
    Engheta N (2007) Circuits with light at nanoscale: Optical nanocircuits inspired by metamaterials. Science 317:1698–1702CrossRefGoogle Scholar
  3. 3.
    Scholten PC (1980) Magnetic birefringence of ferrofluids. J Phys D Appl Phys 13:L231CrossRefGoogle Scholar
  4. 4.
    Horng HE, Hong CY, Yeung WB, Yang HC (1998) Magneto chromatic effects in magnetic fluid thin films. Appl Opt 37(13):2674–2680Google Scholar
  5. 5.
    Chen CS; Fang KL; Yang SY; Chieh JJ; Hong CY, Yang HC (2004) Tunable optical switch using magnetic fluids. Appl Phys Lett 85(23):5592–5594Google Scholar
  6. 6.
    Liao W, Chen X, Chen Y, Shengli P, Xia Y, Li Q (2005) Tunable optical fiber filters with magnetic fluids. Appl Phys Lett 87:151122CrossRefGoogle Scholar
  7. 7.
    Resensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Yang SY, Chieh JJ, Horng HE, Hong CY, Yang HC (2004) Appl Phys Lett 84:5204Google Scholar
  9. 9.
    Pu S, Chen X, Chen Y, Liao W, Chen L, Xia Y (2005) Appl Phys Lett 86:171904CrossRefGoogle Scholar
  10. 10.
    Rao GN, Yao YD, Chen YL, Wu KT, Chen JW (2005) Phys Rev E 72:031408CrossRefGoogle Scholar
  11. 11.
    Khatsuriya KG, Bhatt H (2015) Temperature and size dependence of structural anisotropy in presence of magnetic field—a study to control light transport. In: International conference on NANO-15Google Scholar
  12. 12.
    Bhatt H, Patel R (2013) Optical transport in bidispersed magnetic colloids with varying refractive index. J Nanofluid 2:188–193CrossRefGoogle Scholar
  13. 13.
    Philip J, Laskar JM (2012) Optical properties and applications of ferrofluid—a review. J Nanofluid 1:3–20CrossRefGoogle Scholar
  14. 14.
    Philip LJ, Raj B (2008) Phy Rev E 78:031404Google Scholar
  15. 15.
    Bhatt H, Patel R, Mehta RV (2010) J Opt Soc Am A 27:873CrossRefGoogle Scholar
  16. 16.
    Bhatt H, Patel R, Mehta RV (2012) Phys Rev E 86:011401CrossRefGoogle Scholar
  17. 17.
    Joudrier V, Bourdon P, Hache F, Flytzanis C (1998) Appl Phys B Lasers Opt 67:627CrossRefGoogle Scholar
  18. 18.
    Pate R, Upadhyay RV, Mehta RV (2005) Optical properties of magnetic and non-magnetic composites of ferrofluids. JMMM 300:217CrossRefGoogle Scholar
  19. 19.
    Skeltorp AT (1983) Phys Rev Lett 51:2306CrossRefGoogle Scholar
  20. 20.
    Parekh K, Patel R, Upadhyay RV, Mehta RV (2005) JMMM 289:311CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shantilal Shah Engineering CollegeBhavnagarIndia

Personalised recommendations