Advertisement

Lacustrine groundwater discharge in southern Laguna de Bay, Philippines

  • Erwin Racasa
  • Ronald Lloren
  • Michelle Manglicmot
  • Karen Ann B. Jago-On
  • Maria Ines Rosana D. Balangue
  • Makoto Taniguchi
  • Fernando P. Siringan
Chapter
Part of the Global Environmental Studies book series (GENVST)

Abstract

Although a major potential contributor to water and nutrient budgets, lacustrine groundwater discharge (LGD) is often neglected in most lake studies. Through electrical resistivity profiling surveys, the authors examined the possible occurrence of LGD in southern Laguna de Bay, the largest freshwater lake in the Philippines. Discrete and dispersed LGDs were identified. Discrete LGDs were inferred from narrow highly resistive zones that cut vertically across the lake floor. These discrete LGDs line-up with projections of lineaments on land and are thus deemed to be fault-controlled. Dispersed LGDs, interpreted from wide swaths of resistivity signals cutting across the lake floor, were found to occur more commonly in shallower areas. Findings from radon concentrations, nutrient concentrations, and chlorophyll a analyses support the perceived patterns of LGD occurrences. Nutrient input through LGD is probably contributing to the lake’s current eutrophic condition however where discrete LGDs occur, the fisheries appear to be enhanced.

Keywords

Lacustrine groundwater discharge Nutrients Eutrophication 

References

  1. Brillo BB (2015) The status of Philippine lake studies: scholarly deficit in social science and small-lake research. Asia-Pacific Social Science Review 15(1):78–101Google Scholar
  2. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543CrossRefGoogle Scholar
  3. Cardenas M, Zamora P, Siringan FP, Lapus MR, Rodolfo RS, Jacinto GS et al (2010) Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222-Rn, and salinity measurements. Geophys Res Lett 37(16):L16401CrossRefGoogle Scholar
  4. Förster H, Oles D, Knittel U, Defant MJ, Torres RC (1990) The Macolod corridor: a rift crossing the Philippine island arc. Tectonophysics 183:265–271CrossRefGoogle Scholar
  5. Gomez JEA Jr (2014) Urbanizing at the lake’s edge: watershed planning and governance lessons from the Laguna de bay region, Philippines. Journal in urban and regional. Planning 1(1):34–50Google Scholar
  6. Harvey FE, Rudolph DL, Frape SK (2000) Estimating ground water flux into large lakes: application in the Hamilton Harbor, western Lake Ontario. Ground Water 38:550–565CrossRefGoogle Scholar
  7. Jago-on KAB, Siringan FP, Balangue-Tarriela R, Taniguchi M, Reyes YK, Lloren R, Peña MA, Bagalihog E (2017) Hot spring resort development in Laguna Province, Philippines: challenges in water use regulation. Journal of Hydrology: Regional Studies 11:96–106Google Scholar
  8. Jaraula CMB, Siringan FP, Klingel R, Sato H, Yokoyama Y (2014) Records and causes of Holocene salinity shifts in Laguna de Bay, Philippines. Quat Int 349:207–220CrossRefGoogle Scholar
  9. Johannes RE (1980) The ecological significance of the submarine groundwater discharge of groundwater. Marine Ecology - Progress Series 3:365–373CrossRefGoogle Scholar
  10. Lewandowski J, Meinikmann K, Ruhtz T, Poschke F, Kirillin G (2013) Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation. Remote Sens Environ 138:119–125CrossRefGoogle Scholar
  11. Laguna Lake Development Authority (LLDA) (2012) 2009 to 2012 Annual Water Quality Report on the Laguna de Bay and its Tributary Rivers.. Retrieved from http://www.llda.gov.ph/index.php?option=com_content&view=article&id=218&Itemid=67.. Accessed 7 Mar 2016
  12. Laguna Lake Development Authority (LLDA) (2014) 2013–2014 Laguna de Bay Environment Monitor. Study finds Laguna Lake shallower, SectionGoogle Scholar
  13. Loeb SL, Goldman CR (1979) Water and nutrient transport via groundwater from Ward Valley into Lake Tahoe. Limnol Oceanogr 24(6):1146–1154CrossRefGoogle Scholar
  14. Meinikmann K, Hupfer M, Lewandowski J (2015) Phosphorus in groundwater discharge – a potential source for lake eutrophication. J Hydrol 524:214–226CrossRefGoogle Scholar
  15. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2:59–88CrossRefGoogle Scholar
  16. Moosdorf N, Stieglitz T, Waska H, Dürr HH, Hartmann J (2014) Submarine groundwater discharge from tropical islands: a review. Grundwasser – Zeitschrift der Fachsektion HydrogeologieCrossRefGoogle Scholar
  17. Mulligan AE, Charette MA (2006) Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J Hydrol 327:411–425CrossRefGoogle Scholar
  18. Ommen DAO, Kidmose J, Karan S, Flindt MR, Engesgaard Nilson B, Andersen F (2012) Importance of groundwater and macrophytes for the nutrient balance at oligotrophic Lake Hampen, Denmark. Ecohydrology 5:286–296CrossRefGoogle Scholar
  19. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173Google Scholar
  20. Santos-Borja A, Nepomuceno DN (2006) Laguna de Bay: Experience and lessons learned brief.. Retrieved 7 May 2017.. Accessed from http://www.worldlakes.org/uploads/15_Laguna_de_Bay_27February2006.pdf
  21. Senal MS, Jacinto GS, San Diego-McGlone M, Siringan F, Zamora P, Soria L et al (2011) Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, northwestern Philippines. Mar Pollut Bull 63:195–200CrossRefGoogle Scholar
  22. Strickland J, Parsons T (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, OttawaGoogle Scholar
  23. Swarzenski P, Bratton J and Crusius J (2004) Submarine groundwater discharge and its influence on coastal processes and ecosystems. Retrieved 10 Feb 2013, from USGS Science for a Changing World: http://soundwaves.usgs.gov/2004/06/research4.htm
  24. Tamayo-Zarafalla M, Santos RAV, Orozco RP, Elegado GCP (2002) The ecological status of Lake Laguna de bay, Philippines. Aquat Ecosyst Health Manag 5(2):127–138CrossRefGoogle Scholar
  25. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129CrossRefGoogle Scholar
  26. Taniguchi M, Burnett WC, Dulaiova H, Siringan F, Foronda J, Wattayakorn G et al (2008) Groundwater discharge as an important Land-Sea pathway into Manila Bay, Philippines. J Coast Res 24(1A):15–24CrossRefGoogle Scholar
  27. Taniguchi M, Burnett WC, Smith CF, Paulsen RJ, O'Rourke D, Krupa SL et al (2003) Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the northeastern Gulf of Mexico. Biogeochemistry 66:33–53Google Scholar
  28. Vanek V (1987) The interactions between lake and groundwater and their ecological significance. Stygologia 3:1–23Google Scholar
  29. Zimmer V, Bendoricchio G (2001) Nutrients and suspended solid loads in the Laguna de bay, Philippines. Water Sci Technol 44(7):77–86Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Erwin Racasa
    • 1
  • Ronald Lloren
    • 1
  • Michelle Manglicmot
    • 1
  • Karen Ann B. Jago-On
    • 2
  • Maria Ines Rosana D. Balangue
    • 3
  • Makoto Taniguchi
    • 4
  • Fernando P. Siringan
    • 1
  1. 1.Marine Science InstituteUniversity of the Philippines, DilimanQuezon CityPhilippines
  2. 2.School of Urban and Regional PlanningUniversity of the Philippines, DilimanQuezon CityPhilippines
  3. 3.National Institute of Geological SciencesUniversity of the Philippines, DilimanQuezon CityPhilippines
  4. 4.Research Institute for Humanity and Nature (RIHN)KyotoJapan

Personalised recommendations