Advertisement

Biological Control of Insect Pests for Sustainable Agriculture

  • Satyavir S. SindhuEmail author
  • Anju Sehrawat
  • Ruchi Sharma
  • Aakanksha Khandelwal
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 4)

Abstract

Maintenance of agricultural productivity is currently based mainly on extraneous application of fertilizers and pesticides. However, indiscriminate use of agrochemicals for controlling the pests and diseases led to pollution of soil, water, and food sources, poisoning of nontarget beneficial insects, and development of insect population resistant to insecticides. To obviate the pollution problem and obtain higher yields in a sustainable manner, biological control of insect pests using specific antagonistic microorganisms is an effective alternate approach with minimum deleterious effects. Microorganisms have been obtained from the rhizosphere of different crop plants that inhibited insect pests by producing toxins, bacteriocins, siderophores, hydrolytic enzymes, and other secondary metabolites. Moreover, plant hormones salicylic acid, jasmonic acid, and ethylene orchestrate a complex transcriptional programming that eventually leads to pest-induced SAR (systemic acquired resistance) and ISR (induced systemic resistance) in many plant species. Microbial genes involved in the biosynthesis of secondary metabolites and enzymes have been cloned and transferred to other microorganisms and plants to enhance the suppression and killing of insects. The efficiency of these biocontrol products can be further increased through genetic improvement, manipulation of the soil and plant environment, using mixtures of biocontrol agents, and optimization of formulations and by integration of biocontrol agents with other alternative methods that provide additive and synergistic effects. Thus, the application of effective biocontrol agents may reduce the use of chemical insecticides and support sustainable agriculture in an eco-friendly manner in tandem with improved crop productivity.

Keywords

Biological control Insect pests Rhizosphere microorganisms Sustainable agriculture 

References

  1. Akbar W, Lord JC, Nechols JR, Loughin TM (2005) Efficacy of Beauveria bassiana for red flour beetle when applied with plant essential oils or in mineral oil and organosilicone carriers. J Econ Entomol 98:683–688. https://doi.org/10.1603/0022-0493-98.3.683 PubMedCrossRefGoogle Scholar
  2. Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27:1437–1441. https://doi.org/10.1016/j.cropro.2008.07.003 CrossRefGoogle Scholar
  3. Al Fazairy AA, Hassan FA (1988) Infection of termites by Spodoptera littoralis nuclear polyhedrosis virus. Insect Sci Appl 9:37–39. doi: https://doi.org/10.1017/S1742758400009991
  4. Alexander B, Priest FG (1990) Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. J Gen Microbiol 136:367–376PubMedCrossRefGoogle Scholar
  5. Anonymous (1998) United States Environmental Protection Agency, R.E.D. Facts, Bacillus thuringiensis, prevention, pesticides and toxic substances (751 W), EPA-738-F-98-001Google Scholar
  6. Arnold AE, Lewis LC. (2005) Ecology and evolution of fungal endophytes, and their roles against insects. Insect-fungal associations: ecology and evolution. Oxford University Press, New York 3:74–96Google Scholar
  7. Askary H, Yarmand H (2007) Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. Eur J Entomol 104:67CrossRefGoogle Scholar
  8. Askary H, Carriere Y, Belanger RR, Brodeur J. (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocont Sci Technol 8:23–32. doi: https://doi.org/10.1080/09583159830405
  9. Azevedo JL, Maccheroni Jr W, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16CrossRefGoogle Scholar
  10. Bahar AA, Sezen K, Demirbağ Z, Nalçacioğlu R (2011) The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62:647–653. https://doi.org/10.1007/s13213-011-0301-y CrossRefGoogle Scholar
  11. Barloy F, Delècluse A, Nicolas L, Lecadet MM (1996) Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans sub-sp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol 178:3099–3105. https://doi.org/10.1128/jb.178.11.3099-3105.1996 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barreto MR, Loguercio LL, Valicente FH, Paiva E (1999) Biological control insecticidal activity of culture supernatants from Bacillus thuringiensis Berliner strains against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) larvae. Ann Soc Entomol Brasil 28:675. https://doi.org/10.1590/S0301-80591999000400010
  13. Beck D (1950) The toxicology of antimycin A. J Econ Entomol 43:105–107CrossRefGoogle Scholar
  14. Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196. https://doi.org/10.1146/annurev.phyto.37.1.175 PubMedCrossRefGoogle Scholar
  15. Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467–472Google Scholar
  16. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97:9329–9334PubMedPubMedCentralCrossRefGoogle Scholar
  17. Biswas C, Dey P, Satpathy S, Sarkar SK, Bera A, Mahapatra BS (2013) A simple method of DNA isolation from jute (Corchorus olitorius) seed suitable for PCR-based detection of the pathogen Macrophomina phaseolina (Tassi) Goid. Lett Appl Microbiol 56:105–110. https://doi.org/10.1111/lam.12020 PubMedCrossRefGoogle Scholar
  18. Blackwell M, Rossi W (1986) Biogeography of fungal ectoparasites of termites. Mycotaxon 25:581–601Google Scholar
  19. Boets A, Arnaut G, Van Rie J, Damme N (2004) Toxins United States Patent No 6,706,860Google Scholar
  20. Boonphong S, Kittakoop P, Isaka M, Palittapongarnpim P, Jaturapat A, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) A new antimycobacterial, 3b-acetoxy-15a, 22-dihydroxyhopane, from the insect pathogenic fungus Aschersonia tubulata. Planta Med 67:279–281PubMedCrossRefGoogle Scholar
  21. Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172. https://doi.org/10.1146/annurev.phyto.45.062806.094354 PubMedCrossRefGoogle Scholar
  22. Bowen D (1995) Characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Ph.D. thesis. University of Wisconsin, MadisonGoogle Scholar
  23. Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, Ffrench-Constant RH (2000) Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal tc toxin complexes. Insect Biochem Mol Biol 30:69–74. https://doi.org/10.1016/S0965-1748(99)00098-3
  24. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435PubMedCrossRefGoogle Scholar
  25. Brooks WM (1988) Entomogenous protozoa. Handbook of natural. pesticides 5:1–49Google Scholar
  26. Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema and their bacterial symbionts – lethal pathogens of insect. Nematology 2:31–42CrossRefGoogle Scholar
  27. Cabanillas E, Barker KR (1989) Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. J Nematol 21:115–120PubMedPubMedCentralGoogle Scholar
  28. Charles JF, Silva-filha MH, Nielsen-leroux C (2000) Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. In: Charles JF, Delécluse A, Nielsen-le Roux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publisher, London, pp 237–252CrossRefGoogle Scholar
  29. Chen JW, Liu BL, Tzeng YM (1999) Purification and quantification of destruxins A and B from Metarhizium anisopliae. J Chromatogr 830:115–125. https://doi.org/10.1016/S0021-9673(98)00849-8
  30. Cheng Y, Liu T, Zhao Y, Geng W, Chen L, Liu J (2016) Evaluation of pathogenicity of the fungi Metarhizium anisopliae and Beauveria bassiana in hazelnut weevil (Curculio nucum L., Coleoptera, Curculionidae) larvae. Indian J Microbiol 56:405–410. https://doi.org/10.1007/s12088-016-0614-4 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  32. Connick WJ Jr, Osbrink WLA, Wright MS, Williams KS, Daigle DJ, Boykin WL, Lax AR (2001) Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environ Entomol 30:449–455. doi: https://doi.org/10.1603/0046-225X-30.2.449
  33. Cunningham JC (1995) Baculoviruses as microbial insecticides. In: Reuveni R (ed) Novel approaches to integrated pest management, Lewis, Boca Raton, pp 261–292Google Scholar
  34. Dababat AE, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776CrossRefGoogle Scholar
  35. Daisy S, Strobel G, Ezra D, Castillo UF, Baird G, Hess WM (2002) Muscodor vitigenus anam. sp. nov. an endophyte from Paullinia paulliniodes. Mycotaxon 84:39–50Google Scholar
  36. Darby C, Cosma CL, Thomas JH (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:202–207. https://doi.org/10.1073/pnas.96.26.15202 CrossRefGoogle Scholar
  37. de Barjac H, Lemille F (1970) Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J Invert Pathol 15:139–140CrossRefGoogle Scholar
  38. de Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778. https://doi.org/10.1016/S0261-2194(01)00110-7 CrossRefGoogle Scholar
  39. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore forming entomopathogenic bacteria. Annu Rev Gen 37:409–433. https://doi.org/10.1146/annurev.genet.37.110801.143042 CrossRefGoogle Scholar
  40. de Oliveira FM, de Silva GM, van der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in Southern Brazil and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572. https://doi.org/10.1016/j.resmic.2010.05.008 PubMedCrossRefGoogle Scholar
  41. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:414–764Google Scholar
  42. Desportes I (1963) Cycle evolutif d’une nouvelle Gregarine parasite de Termites: Diplocystis zootermopsidis sp. n. (Eugregarina Diplocystidae). Comtes Rendus Hebdom des Seances de Acad des Sci 257:4013–4015Google Scholar
  43. Devi K, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78Google Scholar
  44. Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int J Appl Biol Pharm Technol 1:374–381Google Scholar
  45. Ekesi S, Maniania NK, Lwande W (2012) Susceptibility of the legume flower thrips to Metarhizium anisopliae on different varieties of cowpea. BioControl 45:79–95. https://doi.org/10.1023/A:1009927302916 CrossRefGoogle Scholar
  46. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104(7):2419–2424PubMedPubMedCentralCrossRefGoogle Scholar
  47. Erb M, Glauser G, Robert CAM (2012) Induced immunity against belowground insect herbivores – activation of defences in the absence of jasmonate burst. J Chem Ecol 38:629–640PubMedCrossRefGoogle Scholar
  48. Fang J, XL X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen ZC (2011) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961Google Scholar
  49. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ferguson CM, Barton DM, Harper LA, Swaminathan J, Van Koten C, Hurst MRH (2012) Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand. Plant Prot 65:166–173Google Scholar
  51. Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M (2012) Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Intern J Agric Biol 14:291–295Google Scholar
  52. Fujii JK (1975) Effect of an entomogenous nematode Neoaplectana carpocapsae Weiser, on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with ecological and biological studies on C. formosanus. Ph.D. dissertation, University of Hawaii, Honolulu, Hawaii, USA. 163 ppGoogle Scholar
  53. Gadelhak GG, EL-Tarabily KA, AL-Kaabi FK (2005) Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int J Agric Biol 7:627–633Google Scholar
  54. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Georgis R, Poinar GO Jr, Wilson AP (1982) Susceptibility of damp-wood termites and soil and wood-dwelling termites to the entomogenous nematode Neoaplectana carpocapsae. IRCS. Med Sci 10:563Google Scholar
  56. Gibbs AJ, Gay FJ, Wetherly AH (1970) A possible paralysis virus of termites. Virology 40:1063–1065CrossRefGoogle Scholar
  57. Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata lectin receptor kinase 1 suppresses the insect-mediated inhibition of induced defence responses during Manduca sexta herbivory. Plant Cell 23:3512–3532PubMedPubMedCentralCrossRefGoogle Scholar
  58. Glare TR, O’callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, ChichesterGoogle Scholar
  59. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258PubMedCrossRefGoogle Scholar
  60. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378. https://doi.org/10.1016/S0734-9750(97)00004-9 PubMedCrossRefGoogle Scholar
  61. Goettel MS, Hajek AE (2001) Evaluation of non-target effects of pathogens used for management of arthropods. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Press, Wallingford, pp 81–97Google Scholar
  62. Gopalakrishnan S, Ranga Rao GV, Humayun P, Rameshwar Rao V, Alekhya G, Simi J, Deepthi K, Sree Vidya M, Srinivas V, Mamatha L, Rupela O (2011) Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr J Biotechnol 10:16667–16673. https://doi.org/10.5897/AJB11.2475 Google Scholar
  63. Govindarajan M, Jebanesan A, Reetha D (2005) Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus say. Trop Biomed 22:1–3PubMedGoogle Scholar
  64. Grace JK (1991) Termite-fungal associations and manipulations for termite control. In: Program and abstracts. 24th annual meeting, Society of Invertebrate Pathology, Northern Arizona University, Flagstaff, August 4–9, 1991. p 29Google Scholar
  65. Grace JK, Ewart D (1996) Recombinant cells of Pseudomonas fluorescens: a highly palatable encapsulation for delivery of genetically engineered toxins to subterranean termite (Isoptera: Rhinotermitidae). Lett Appl Microbiol 23:183–186CrossRefGoogle Scholar
  66. Grace JK, Zoberi MH (1992) Experimental evidence for transmission of Beauveria bassiana by Reticulitermes flavipes workers (Isoptera: Rhinotermitidae). Sociobiology 20:23–28Google Scholar
  67. Grace JK, Goodell BS, Jones WE, Chandhoke V, Jellison J (1992) Evidence for inhibition of termites (Isoptera: Rhinotermitidae) feeding by extracellular metabolites of a wood decay fungus. Proc Hawaiian Entomol Soc 31:249–252Google Scholar
  68. Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro BM (2010) Insecticidal activity of two proteases against Spodoptera Frugiperda larvae infected with recombinant baculoviruses. Virol J 7:143. https://doi.org/10.1186/1743-422X-7-143 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gunner HB, Kane J, Duan H (1994) Biological control of termites. PCT Patent Application ~WO94 04034Google Scholar
  70. Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011 CrossRefGoogle Scholar
  71. Henry JE (1990) Control of insects by protozoa. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and disease. Alan R Liss Inc, New York, pp 161–176Google Scholar
  72. Herbert AK (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111. https://doi.org/10.1038/ja.2010.5 CrossRefGoogle Scholar
  73. Hoell IA, Klemsdal SS, Vaaje-Kolstad G, Horn SJ, Eijsink VGH (2005) Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain. Biochim Biophys Acta 1748:180–190. https://doi.org/10.1016/j.bbapap.2005.01.002 PubMedCrossRefGoogle Scholar
  74. Hoshino T (2011) Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91:1463–1475. https://doi.org/10.1007/s00253-011-3468-z PubMedCrossRefGoogle Scholar
  75. Huamei L, Qf S, Yongxia W, Wenjun L, Jie Z (2008) Insecticidal action of quinomycin A from Streptomyces sp. KN-0647 isolated from a forest soil. World J Microbiol Biotechnol 24:2243–2248. https://doi.org/10.1007/s11274-008-9736-0 CrossRefGoogle Scholar
  76. Hurst MRH, Becher SA, Young SD, Nelson TL, Glare TR (2011) Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Intern J Syst Evol Microbiol 61:844–849. https://doi.org/10.1099/ijs.0.024406-0 CrossRefGoogle Scholar
  77. Hussain AA, Mostafa SA, Ghazal SA, Ibrahim SY (2002) Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. Afr J Mycol Biotechnol 10:63–80Google Scholar
  78. Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept Ltd., Andover, pp 191–198Google Scholar
  79. Jafri RH, Ahmad M, Idrees K (1976) Microsporidian infection in the workers of termite, Microcerotermes championi. Pak J Zool 8:234–236Google Scholar
  80. Jegorov A, Kadlec J, Novak J, Matha V, Sedmera P, Triska J, Zahradnickova H (1989) Are the depsipeptides of Beauveria brongniartii involved in the entomopathogenic process? In: Jegorov A, Matha V (eds) Proceedings of the international conference on biopesticides, theory and practice. Ceske Budejovice, Czechoslovakia, pp 71–81Google Scholar
  81. Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535PubMedCrossRefGoogle Scholar
  82. Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and above-ground insect herbivory. New Phytol 210:413–418. https://doi.org/10.1111/nph.13807 PubMedCrossRefGoogle Scholar
  83. Kaijiang L, Roberts DW (1986) The production of destruxins by the entomogenic fungus, Metarhizium anisopliae var. major. J Invertebr Pathol 47:120–122. https://doi.org/10.1016/0022-2011(86)90170-9 CrossRefGoogle Scholar
  84. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. https://doi.org/10.1146/annurev.en.38.010193.001145 CrossRefGoogle Scholar
  85. Kaya HK, Bedding RA, Akhurst RJ (1993) An overview of insect-parasitic and entomopathogenic nematodes. In: Bedding RA, Akhurst R, Kaya H (eds) Nematodes and the biological control of insect pest. CSIRO, East Melbourne, Australia, pp 1–10Google Scholar
  86. Keller S (2000) Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull OILB/SROP 23:67–71Google Scholar
  87. Khan KI, Fazal QA, Jafri RH, Ahmad MU (1977) Susceptibility of various species of termites to a pathogen, Serratia marcescens. Pak J Sci Res 29:46–47Google Scholar
  88. Khan KI, Fazal QA, Jafri RH (1978) Development of Bacillus thuringiensis in a termite, Heterotermes indicola (Wassman) [sic]. Pak J Sci Res 30:117–119Google Scholar
  89. Khan KI, Jafri RH, Ahmad M (1985) The pathogenicity and development of Bacillus thuringiensis in termites. Pak J Zool 17:201–209Google Scholar
  90. Khan KI, Jafri RH, Ahmad M, Khan KMS (1992) The pathogenicity of Pseudomonas aeruginosa against termites. Pak J Zool 24:243–245Google Scholar
  91. Kido GS, Spyhalski E (1950) Antimycin A, an antibiotic with insecticidal and miticidal properties. Science 112:172–173PubMedCrossRefGoogle Scholar
  92. Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002) Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J Nat Inst Agri Sci Technol:7–14Google Scholar
  93. Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. BioControl 40:327–332. https://doi.org/10.1016/j.biocontrol.2006.12.002 Google Scholar
  94. Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. BioControl 45:404–409. https://doi.org/10.1016/j.biocontrol.2008.02.003 Google Scholar
  95. Klein MG (1988) Pest management of soil-inhibiting insects with microorganisms. Agric Ecosyst Environ 24:337–349CrossRefGoogle Scholar
  96. Klingen I, Eilenberg J, Meadow R (1998) Insect pathogenic fungi from northern Norway baited on Delia floralis (Diptera, Anthomyiidae) and Galleria mellonella (Lepidoptera, Pyralidae). IOBC wprs Bull 21:121–124Google Scholar
  97. Konstantopoulou MA, Mazomenos BE (2005) Evaluation of Beauveria bassiana and B. brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae and Ceratitis capitata. BioControl 50:293–305. https://doi.org/10.1007/s10526-004-0458-4 CrossRefGoogle Scholar
  98. Krasnoff SB, Gibson DM (1996) New destruxins from the entomopathogenic fungus, Aschersonia sp. J Natur Prod 59:485–489. https://doi.org/10.1021/np9601216 CrossRefGoogle Scholar
  99. Kumari V, Singh NP (2009) Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage. J Biopest 2:84–86Google Scholar
  100. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294. https://doi.org/10.1007/s002840110219 PubMedGoogle Scholar
  101. Lacey LA, Goettel M (1995) Current developments in microbial control of insects, pests and prospects for the early 21st century. Entomophaga 40:3–27. https://doi.org/10.1007/BF02372677 CrossRefGoogle Scholar
  102. Lacey LA, Neven LG (2006) The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 91:195–198. https://doi.org/10.1016/j.jip.2006.01.002 PubMedCrossRefGoogle Scholar
  103. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009 PubMedCrossRefGoogle Scholar
  104. Laid B, Kamel K, Mouloud G, Manel S, Walid S, Amar B, Hamenna B, Faiçal B (2016) Effects of plant growth promoting rhizobacteria (PGPR) on in vitro bread wheat (Triticum aestivum L.) growth parameters and biological control mechanisms. Adv Microbiol 6:677–690. https://doi.org/10.4236/aim.2016.69067 CrossRefGoogle Scholar
  105. Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG (2003) The Drosophila melanogaster toll pathway participates in resistance to infection by the Gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71:4059–4066. https://doi.org/10.1128/IAI.71.7.4059-4066.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lehr P (2010) Biopesticides: the global market, report code CHM029B, BCC ResearchGoogle Scholar
  107. Leong KLH (1966) Infection of the Formosan subterranean termite, Coptotermes formosanus Shiraki, by the fungus Metarhizium anisopliae (Metsch.) Sorok. M. Sc. thesis, University of Hawaii, HonoluluGoogle Scholar
  108. Li Z, Li CR, Huang B, Meizhen MZ (2001) Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill. An important entomogenous fungus. Chin Sci Bull 46:751–753. https://doi.org/10.1007/BF03187215
  109. Li Z, Wang Z, Peng G, Yin Y, Zhao H, Cao Y, Xia Y (2007) Regulation of extracellular acid phosphatase biosynthesis by culture conditions in entomopathogenic fungus Metarhizium anisopliae strain. Ann Microbiol 57:565–570. https://doi.org/10.1007/BF03175356 CrossRefGoogle Scholar
  110. Li X, Zhang Y, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil Soils 51:935–946. https://doi.org/10.1007/s00374-015-1038-8 CrossRefGoogle Scholar
  111. Liu F, Yang W, Ruan L, Sun M (2013) A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 63:1131–1135. https://doi.org/10.1007/s13213-012-0570-0 CrossRefGoogle Scholar
  112. Lu J, Robert CAM, Riemann M, Cosme M, Mene-Saffrane L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167:1100–1116PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lysenko O, Kucera M (1971) Microorganisms as sources of new insecticidal chemicals; toxins. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London/New York, pp 205–227Google Scholar
  114. Maniania NK, Ekesi S, Songa JM (2002) Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Int J Trop Insect Sci 22:41–46. https://doi.org/10.1017/S1742758400015046 CrossRefGoogle Scholar
  115. Martin PAW, Shropshire ADS, Gundersen-Rindal DE, Blackburn MB (2007) Chromobacterium subtsugae sp. nov. and use for control of insect pests. US Patent Application Publication, 2007/0172463 A1Google Scholar
  116. Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:177–188. https://doi.org/10.1007/s11274-016-2131-3 PubMedCrossRefGoogle Scholar
  117. Mazet I, Hung SY, Boucias DG (1995) Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. J Invertbr Pathol 64:200–207. https://doi.org/10.1099/13500872-141-6-1343 Google Scholar
  118. Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect modulation responses to bacterial infections. Proc Natl Acad Sci U S A 91:2418–2422Google Scholar
  119. Milner RJ, Staples JA (1996) Biological control of termites: results and experiences within a CSIRO project in Australia. Biocontrol Sci Tech 6:3–9Google Scholar
  120. Milner RJ, Staples JA, Lenz M (1996) Options for termite management using the insect pathogenic fungus Metarhizium anisopliae. International group on wood preservation. Document No. IRG/WP9610142, pp 1–5Google Scholar
  121. Milner RJ, Staples JA, Lutton GG (1998) The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biol Control 11:240–247. https://doi.org/10.1006/bcon.1997.0574 CrossRefGoogle Scholar
  122. Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069. https://doi.org/10.1128/AEM.67.5.2062-2069.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289. https://doi.org/10.1146/annurev.ento.44.1.257 PubMedCrossRefGoogle Scholar
  124. Mostakim M, Mohammed IH, Ibnsouda SK (2012) Biocontrol potential of a Pseudomonas aeruginosa strain against Bactrocera oleae. Afr J Microbiol Res 6:5472–5478. https://doi.org/10.5897/AJMR11.1598 Google Scholar
  125. Muratoglu H, Kati H, Demibag Z (2009) High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). Afr J Biotechnol 8:7111–7115Google Scholar
  126. Muratoglu H, Nacacioglu R, Demibag Z (2010) Transcriptional and structural analyses of Amsacta moorei entomopoxvirus protein kinase gene (AMV197, pk). Ann Microbiol 60:523–530. https://doi.org/10.1007/s13213-010-0082-8 CrossRefGoogle Scholar
  127. Murty MG, Srinivas G, Sekar V (1994) Production of mosquitocidal exotoxin by a Pseudomonas fluorescens strain. J Invert Pathol 64:68–70. https://doi.org/10.1006/jipa.1994.1071 CrossRefGoogle Scholar
  128. Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. https://doi.org/10.1146/annurev.bi.50.070181.003435 PubMedCrossRefGoogle Scholar
  129. Nickle WR, Welch HE (1984) History, development and importance of insect nematology. In: Nickle WR (ed) Plant and insect nematodes. Marcel Dekker Inc, New York, pp 627–653Google Scholar
  130. Nicolas L, Hamon S, Frachon E, Sebald M, De Barjac H (1990) Partial inactivation of the mosquitocidal activity of Clostridium bifermentans serovar malaysia by extracellular proteinases. Appl Microbiol Biotechnol 34:36–41. https://doi.org/10.1007/BF00170920 CrossRefGoogle Scholar
  131. Nishiwaki H, Nakashima K, Ishida C, Kawamura T, Matsuda K (2007) Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Appl Environ Microbiol 73:3404–3411. https://doi.org/10.1128/AEM.00021-07 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nunez E, Iannacone J, Gomez H (2008) Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis 1846) (Hemiptera: Aleyrodidae). Chil J Agric Res 68:21–30. https://doi.org/10.4067/S0718-58392008000100003 Google Scholar
  133. Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Osbrink LAW, Williams KS, Connick WJ Jr, Wright MS, Lax AR (2001) Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environ Entomol 76:443–448Google Scholar
  135. Ouedraogo RM, Cusson M, Goettel MS, Brodeur J (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var. acridum. J Invert Pathol 82:103–109. https://doi.org/10.1016/S0022-2011(02)00185-4 CrossRefGoogle Scholar
  136. Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp (74):e50360. doi: https://doi.org/10.3791/50360
  137. Payne CC (1982) Insect viruses as control agents. Parasitology 84:35–77. https://doi.org/10.1017/S0031182000053609 CrossRefGoogle Scholar
  138. Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281. https://doi.org/10.1128/MMBR.00034-06
  139. Pitterna T, Cassayre J, Huter O (2009) New ventures in the chemistry of Avermectins. Bioorg Med Chem 17:4085–4095. https://doi.org/10.1016/j.bmc.2008.12.069 PubMedCrossRefGoogle Scholar
  140. Popham HJR, Nusawardani T, Bonning BC (2016) Introduction to the use of baculoviruses as biological insecticides. Methods Mol Biol 1350:383–392. https://doi.org/10.1007/978-1-4939-3043-2-19 PubMedCrossRefGoogle Scholar
  141. Popiel I, Hominick WH (1992) Nematodes as biological control agents: Part II. Adv Parasitol 31:381–433. https://doi.org/10.1016/S0065-308X(08)60025-1 CrossRefGoogle Scholar
  142. Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748–757. http://www.scielo.org.co/pdf/rudca/v13n2/v13n2a09.pdf
  143. Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Intern J Biol Sci 4:330–337. https://doi.org/10.7150/ijbs.4.330 CrossRefGoogle Scholar
  144. Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR, Prinsen MJ, Corbin DR, Tran M, Sammons RD, Stonard RJ (1993) Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem Biophys Res Commun 196:1406–1413. https://doi.org/10.1006/bbrc.1993.2409 PubMedCrossRefGoogle Scholar
  145. Quesada-Moraga E, Alain VE (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452PubMedCrossRefGoogle Scholar
  146. Quesada-Moraga E, Carrasco-diaz JA, Santiago-Alvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452CrossRefGoogle Scholar
  147. Rakshiya YS, Verma MK, Sindhu SS (2016) Efficacy of antagonistic soil bacteria in management of subterranean termites (Isoptera). Res Environ Life Sci 9:949–955Google Scholar
  148. Rath AC, Tidbury CA (1996) Susceptibility of Coptotermes acinaciformis (Isoptera: Rhinotermitidae) and Nasutitermes exitiosus (Isoptera: Termitidae) to two commercial isolates of Metarhizium anisopliae. Sociobiology 28:67–72Google Scholar
  149. Revathi N, Ravikumar G, Kalaiselvi M, Gomathi D, Uma C (2011) Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. J Plant Pathol Microbiol 2:114. https://doi.org/10.4172/2157-7471.1000114 CrossRefGoogle Scholar
  150. Rivers DB, Vann CN, Zimmack HL, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invert Pathol 58:444–447. https://doi.org/10.1016/0022-2011(91)90191-R CrossRefGoogle Scholar
  151. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
  152. Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492PubMedPubMedCentralCrossRefGoogle Scholar
  153. Ruiu L, Delrio G, Ellar DJ, Floris I, Paglietti B, Rubino S, Satta A (2006) Lethal and sub-lethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomol Exp Appl 118:137–144. https://doi.org/10.1111/j.1570-7458.2006.00370.x
  154. Ruiu L, Satta A, Floris I (2013) Emerging entomopathogenic bacteria for insect pest management. Bull Insectol 66:181–186Google Scholar
  155. Sabaratnam S, Traquair JA (2015) Mechanism of antagonism by Streptomyces grisecarneous (strain Di944) against fungal pathogens of green house-grown tomato transplants. Can J Plant Pathol 37:197–211. https://doi.org/10.1080/07060661.2015.1039062 CrossRefGoogle Scholar
  156. Saikia R, Gogoi DK, Mazumder S, Yadav A, Sarma RK, Bora TC, Gogoi BK (2011) Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol Res 166:216–225. https://doi.org/10.1016/j.micres.2010.03.002. Epub 2010 Jul 13PubMedCrossRefGoogle Scholar
  157. Sandhu SS, Rajak RC, Hasija SK (2000) Potential of entomopathogens for the biological management of medically important pest: progress and prospect. In: Glimpses in plant sciences, pp 110–117Google Scholar
  158. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29. https://doi.org/10.1016/j.micres.2013.08.009
  159. Seleena P, Lee HL (1994) Insecticidal activity of a Malaysian isolate of Aspergillus niger. Asian J. Sci Technol Dev 11:47–53Google Scholar
  160. Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011) Increase of the Bacillus thuringiensis secreted toxicity against lepidopteran larvae by homologous expression of the vip3LB gene during sporulation stage. Curr Microbiol 63:289–294Google Scholar
  161. Seo JH, Yeo JS, Cha HJ (2005) Baculoviral Polyhedrin- Bacillus thuringiensis toxin fusion protein: a protein-based bio-insecticide expressed in Escherichia coli. Biotechnol Bioeng 92:166–172PubMedCrossRefGoogle Scholar
  162. Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Alun J, Morgan W (2006) Identification, typing and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907. https://doi.org/10.1128/AEM.00217-06 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sevim A, Demirbag Z, Demirturk I (2010) A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk J Agric For 34:333–342Google Scholar
  164. Sezen K, Demir I, Demirbag Z (2005) Investigations on bacteria as a potential biological control agent of summer chafer Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43:463–468PubMedGoogle Scholar
  165. Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microbiol Technol 40:961–968CrossRefGoogle Scholar
  166. Sharaf EF (2005) A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Pol J Microbiol 54:145–151PubMedGoogle Scholar
  167. Sindhu SS, Parmar P, Phour M, Kumari K (2014) Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Nagpal R, Kumar A, Singh R (eds) Microbes in the service of mankind: tiny bugs with huge impact. JBC Press, New Delhi, pp 32–94Google Scholar
  168. Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J 1:135–148CrossRefGoogle Scholar
  169. Singer S (1996) The utility of morphological group II Bacillus. Adv Appl Microbiol 42:219–261Google Scholar
  170. Singh Y (2007) Isolation and identification of bacteria having pathogenic interactions with termites (Isoptera). M.Sc. thesis submitted to CCS Haryana Agricultural University, Hisar, p 104Google Scholar
  171. Smith KM (1967) Insect virology. Academic, New York, p 256Google Scholar
  172. Smythe RV, Coppel HC (1965) The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J Invertebr Pathol 7:423–426CrossRefGoogle Scholar
  173. Snyder D, Meyer J, Zimmerman AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol 150:345–351PubMedCrossRefGoogle Scholar
  174. Srivastava JN, Prakash S (2001) Chrysosporium tropicum efficacy against Anopheles stephensi larvae in the laboratory. J Am Mosquito Contr Assoc 17:127–130Google Scholar
  175. Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci U S A 88:1064–1068PubMedPubMedCentralCrossRefGoogle Scholar
  176. Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Tech 10:717–735CrossRefGoogle Scholar
  177. Sun J, Fuxa JR, Henderson G (2002) Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus and in vitro. J Invertebr Pathol 81:78–85PubMedCrossRefGoogle Scholar
  178. Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biol Control 54:663–669Google Scholar
  179. Thakur R, Sandhu SS (2010) Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of central India. Indian J Microbiol 50:89–96PubMedPubMedCentralCrossRefGoogle Scholar
  180. Trudeau D (1989) Selection of entomophilic nematodes for control of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Master’s thesis, University of Toronto, Toronto, Ontario, Canada, 93 ppGoogle Scholar
  181. Tuan SJ, Hou RF, Lee CF, Chao YC (2007) High level production of polyhedral in a scorpion toxin containing recombinant baculovirus for better control of insect pests. Bot Stud 48:273–281Google Scholar
  182. van Rie J, Jansens S, Hofte H, Degheele D, van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins. Importance of specific receptors on the brush-border membrane of the mid-gut of target insects. Eur J Biochem 186:239–247PubMedCrossRefGoogle Scholar
  183. Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58:636–641CrossRefGoogle Scholar
  184. Vega FE, Kaya HK (2012) Insect pathology. Academic, San DiegoGoogle Scholar
  185. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82CrossRefGoogle Scholar
  186. Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46–54Google Scholar
  187. Vimala Devi PS (2001) Prospects of using Nomuraea rileyi for the management of crop pests. In: Rabindra RJ, Kennedy JS, Sainath N, Rajsekaran B, Srinivasan MR (eds) Microbial control of crop pests. Graphic Skill Publisher, Coimbatore, pp 80–94Google Scholar
  188. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnol 24:673–679CrossRefGoogle Scholar
  189. Vu TT (2005) Modes of action of non-pathogenic Fusarium oxysporum endophytes for bio-enhancement of banana toward Radopholus similis. Ph.D. thesis, University of Bonn, GermanyGoogle Scholar
  190. Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp). Biol Control 74:82–88CrossRefGoogle Scholar
  191. Wells JD, Fuxa JR, Henderson G (1995) Virulence of four fungal pathogens to Coptotermes formosanus (Isoptera: Rhinotermitidae). J Entomol Sci 30:208–215CrossRefGoogle Scholar
  192. Wright MS, Connick WJ, Jackson MA (2003) Use of Paecilomyces sp. as pathogenic against termites. US Patent 6660291Google Scholar
  193. Wright MS, Raina AK, Lax AR (2005) A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. J Econ Entomol 98:1451–1458PubMedCrossRefGoogle Scholar
  194. Yankouskaya A (2009) Application of biological insecticide Pecilomicine-B for greenhouse pest control. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture Sodininkystė Ir Daržininkystė 28:249–258Google Scholar
  195. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536PubMedPubMedCentralGoogle Scholar
  196. Yu H, Gouge DH, Baker P (2006) Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). J Econ Entomol 99:1112–1119PubMedCrossRefGoogle Scholar
  197. Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Kett Appl Microbiol 42:109–114. https://doi.org/10.1111/j.1472-765X.2005.01817.x

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Satyavir S. Sindhu
    • 1
    Email author
  • Anju Sehrawat
    • 1
  • Ruchi Sharma
    • 1
  • Aakanksha Khandelwal
    • 1
  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations