Role of Phytohormones in Plant Defense: Signaling and Cross Talk

  • Vibha Gulyani Checker
  • Hemant Ritturaj Kushwaha
  • Pragati Kumari
  • Saurabh Yadav


Plants, being sessile throughout their life cycle, are vulnerable to various kinds of abiotic and biotic stress conditions. They have evolved sophisticated mechanisms to detect precise environmental change and respond with an optimal response, thereby minimizing damage and conserving resources for growth and development. The response of plants towards these stresses are dynamic and complex. A defense response is initiated via modulation of molecular events, which involves interplay of signaling molecules including phytohormones. Phytohormones are small endogenous, low-molecular-weight molecules, which trigger an effective defense response against both biotic and abiotic stresses. Apart from defense signaling, these phytohormones are also regulators of growth, development, and physiological processes. The phytohormones such as auxins, cytokinins (CKs), gibberellins (GAs), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), and brassinosteroids (BRs) respond to stress via synergistic and antagonistic actions often referred to as signaling cross talk. These phytohormones coordinate with each other in a harmonious manner and respond to developmental and environmental cues. All defense response in plants are the result of interplay of many genes and gene families nicely orchestrated in a network. Various phytohormones are known to play important role in almost all the process through the modulation of genes. Further, through the optimal mix of phytohormones, plants maintain homeostasis and adapt to the environmental changes. This is only possible by an efficient and systemic cross talk between various phytohormones which help plants to maintain a critical balance between growth and environmental response. This chapter would assist plant biologist in further understanding the ability of the plants to perceive, synthesize, and respond to phytohormones in response to environmental stresses.


Signaling Phytohormones Jasmonates Biotic stress Plant defense Cross talk 


  1. Abdala G, Miersch O, Kramell R, Vigliocco A, Agostini E, Forchetti G, Alemano S (2003) Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl. J Plant Growth Regul 40:21–27CrossRefGoogle Scholar
  2. Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New YorkGoogle Scholar
  3. Achard P, Renou J-P, Berthomé R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660PubMedCrossRefGoogle Scholar
  4. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681PubMedPubMedCentralCrossRefGoogle Scholar
  5. Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2003) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci 109(1):303–308CrossRefGoogle Scholar
  6. Ali SS, Kumar GBS, Khan M, Doohan FM (2013) Brassinosteroid enhances resistance to fusarium diseases of barley. Ann Bot 86:441–447Google Scholar
  7. Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Plant Biol 7:948–956Google Scholar
  8. Argueso CT, Raines T, Kieber JJ (2010) Cytokinin signaling and transcriptional networks. Curr Opin Plant Biol 13:533–539PubMedCrossRefGoogle Scholar
  9. Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190CrossRefGoogle Scholar
  10. Asselbergh B, De Vleesschauwer D, Hofte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant-Microbe Interact 21:709–719PubMedCrossRefGoogle Scholar
  11. Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501PubMedPubMedCentralCrossRefGoogle Scholar
  12. Avanci NC, Luche DD, Goldman GH, Goldman MH (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1):484–505PubMedCrossRefGoogle Scholar
  13. Bajguz, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8PubMedCrossRefGoogle Scholar
  14. Bassett CL, Nickerson ML, Farrell RE, Artlip TS, El Ghaouth A, Wilson CL, Wisniewski ME (2005) Characterization of an S-locus receptor protein kinase-like gene from peach. Tree Physiol 25:403–411PubMedCrossRefGoogle Scholar
  15. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240PubMedCrossRefGoogle Scholar
  16. Beffa RS, Hofer R-M, Thomas M, Meins F Jr (1996) Decreased susceptibility to virus disease of β-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001–1011PubMedPubMedCentralGoogle Scholar
  17. Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL (2012) ChoryJ Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci 109:297–302PubMedCrossRefGoogle Scholar
  18. Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427PubMedCentralCrossRefGoogle Scholar
  19. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448PubMedCrossRefGoogle Scholar
  20. Boyle P, Le SE, Rochon A, Shearer HL, Murmu J, Chu JY et al (2009) The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21:3700–3713PubMedPubMedCentralCrossRefGoogle Scholar
  21. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bruyne DL, Höfte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant immunity. Mol Plant 7:943–959PubMedCrossRefGoogle Scholar
  23. Carpita NC, McCann M (2000) The cell wall. In: Buchanan B et al (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108Google Scholar
  24. Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S (2011) The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana. PLoS One 6:e16608PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci 104:20131–20136PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cheng M-C, Liao P-M, Kuo W-W, Lin T-P (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14:535–541PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 12:803–814CrossRefGoogle Scholar
  29. Clouse S, Sasse J (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451PubMedCrossRefGoogle Scholar
  30. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Bot 217:67–75CrossRefGoogle Scholar
  31. Davies PJ (1995) The plant hormone concept: concentration, sensitivity and transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Boston, pp 13–38Google Scholar
  32. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. Plant hormones. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  33. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) CYTOSOLIC ASCORBATE PEROXIDASE 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281PubMedPubMedCentralCrossRefGoogle Scholar
  34. De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532PubMedCrossRefGoogle Scholar
  35. de Torres Z, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G et al (2007) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47:368–382CrossRefGoogle Scholar
  36. De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dempsey DA, Klessig DF (2017) How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol 15:23PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dempsey DM, Corina Vlot A, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156PubMedPubMedCentralCrossRefGoogle Scholar
  39. Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87PubMedCrossRefGoogle Scholar
  40. Dey S, Wenig M, Langen G, Sharma S, Kugler KG, Knappe C et al (2014) Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiol 166:2133–2151PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  42. Eyidogan F, Oz MT, Yucel M, Oktem HA (2012) Signal transduction of phytohormones under abiotic stresses. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 1–48Google Scholar
  43. Fahad SS, Hussain A, Matloob FA, Khan A, Khaliq S, Saud S, Hassan D, Shan F, Khan N, Ullah M, Faiq MR, Khan AK, Tareen A, Khan A, Ullah N, Ullah JL et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404CrossRefGoogle Scholar
  44. Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A (2013) 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185(9):7845–7856PubMedCrossRefGoogle Scholar
  45. Fariduddin QM, Yusuf I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17CrossRefGoogle Scholar
  46. Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CDM, Nazar RN, Robb J, Liu C-M, Thomma BPH (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332PubMedPubMedCentralCrossRefGoogle Scholar
  47. Friedrichsen DM, Joazeiro CAP, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-I is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1255PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863PubMedCrossRefGoogle Scholar
  49. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740–743PubMedCrossRefGoogle Scholar
  50. Fu J, Wang S (2011) Insights into auxin signaling in plant–pathogen interactions. Front Plant Sci 2:74PubMedPubMedCentralCrossRefGoogle Scholar
  51. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotphic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  52. Gomes MMA (2011) Physiological effects related to brassinosteroid application in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormones. Springer, Dordrecht/Heidelberg/London/New York, p 193CrossRefGoogle Scholar
  53. Guo R, Qian H, Shen W, Liu L, Zhang M, Cai C, Zhao Y, Qiao J, Wang Q (2013) BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J Exp Bot 64:2401–2412PubMedPubMedCentralCrossRefGoogle Scholar
  54. Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental onditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 49–76CrossRefGoogle Scholar
  55. Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 46:1026–1030CrossRefGoogle Scholar
  56. Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457PubMedCrossRefGoogle Scholar
  57. Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 53:433–437CrossRefGoogle Scholar
  58. Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11:33–42PubMedCrossRefGoogle Scholar
  59. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefGoogle Scholar
  60. Ishihara T, Sekine KT, Hase S, Kanayama Y, Seo S, Ohashi Y et al (2008) Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biol 10:451–461PubMedCrossRefGoogle Scholar
  61. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P et al (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15(11):2503–2513PubMedPubMedCentralCrossRefGoogle Scholar
  62. Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734Google Scholar
  63. Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen Z, Yu JQ (2012) Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol 194:932–943PubMedCrossRefGoogle Scholar
  64. Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant-Microbe Interact 26:287–296PubMedCrossRefGoogle Scholar
  65. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signalling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109:19486–19491PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837PubMedGoogle Scholar
  67. Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–382PubMedCrossRefGoogle Scholar
  69. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C et al (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell death control. Curr Biol 17:1116–1122PubMedCrossRefGoogle Scholar
  70. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  71. Khripach V (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447CrossRefGoogle Scholar
  72. Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection with Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9CrossRefGoogle Scholar
  73. Leclercq J, Ranty B, Sanchez-Ballesta MT, Li ZG, Jones B, Jauneau A, Pech JC, Latche A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot 56:25–35PubMedGoogle Scholar
  74. LeNoble ME, Spollen WG, Sharp RE (2004) Sharp maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55:237–245PubMedCrossRefGoogle Scholar
  75. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lin W, Lu D, Gao X, Jiang S, Ma X, Wang Z, Mengiste T, He P (2013) Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proc Natl Acad Sci U S A 110:12114–12119PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3912PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lozano-Durán R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C (2013) The transcriptional regulator BZR1mediates trade-off between plant innate immunity and growth. elife 2:e00983PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maciejewska B, Kopcewicz J (2003) Inhibitory effect of methyl jasmonate on flowering and elongation growth in pharbitis nil. J Plant Growth Regul 21:216–223CrossRefGoogle Scholar
  81. MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442PubMedCrossRefGoogle Scholar
  82. Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004PubMedCrossRefGoogle Scholar
  83. Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414PubMedCrossRefGoogle Scholar
  85. Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact 19:1127–1137PubMedCrossRefGoogle Scholar
  86. Mitchell JW, Mandava NB, Worley JF, Plimmer JR, Smith MV (1970) Brassins: a new family of plant hormones from rape pollen. Nature 225:1065–1066PubMedCrossRefGoogle Scholar
  87. Mohr P, Cahill D (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191PubMedCrossRefGoogle Scholar
  88. Muday GK, Rahman A (2008) Auxin transport and the integration of gravitropic growth. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell Publishing, Oxford, pp 47–68Google Scholar
  89. Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signalling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci U S A 90:7490–7494PubMedPubMedCentralCrossRefGoogle Scholar
  90. Muller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69PubMedCrossRefGoogle Scholar
  91. Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant Microbe Interact 26:106–115PubMedCrossRefGoogle Scholar
  92. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33(5):887–898PubMedCrossRefGoogle Scholar
  93. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  94. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655PubMedCrossRefGoogle Scholar
  95. Noodén LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39PubMedPubMedCentralCrossRefGoogle Scholar
  96. O’Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451PubMedPubMedCentralCrossRefGoogle Scholar
  97. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917PubMedCrossRefGoogle Scholar
  98. Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8(10):1821–1831PubMedPubMedCentralCrossRefGoogle Scholar
  99. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical is a critical mobile signal for plant systemic acquired resistance. Science 318:113PubMedCrossRefGoogle Scholar
  100. Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158CrossRefGoogle Scholar
  101. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120Google Scholar
  102. Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant-Microbe Interact 26:227–239PubMedCrossRefGoogle Scholar
  103. Reusche M, Kláskova J, Thole K, Truskina J, Novák O, Janz D, Strnad M, Spichal L, Lipka V, Teichmann T (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant-Microbe Interact 26:850–860PubMedCrossRefGoogle Scholar
  104. Rezzonico E, Flury N, Meins F, Beffa RS (1998) Transcriptional down-regulation by abscisic acid of pathogenesis-related beta-1,3-glucanase genes in tobacco cell cultures. elife 2:e00983Google Scholar
  105. Rochon A, Boyle P, Wignes T, Fobert PR, Despres C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18:3670–3685PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448PubMedCrossRefGoogle Scholar
  107. Sakurai A, Yokota T, Clouse SD (eds) (1999) Brassinosteroids: steroidal plant hormones. Springer, Tokyo, pp 1–253CrossRefGoogle Scholar
  108. Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330PubMedCrossRefGoogle Scholar
  109. Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155:502–514PubMedCrossRefGoogle Scholar
  110. Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci U S A 93:5099–5104PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shi H, Shen Q, Qi Y, Yan H, Nie H, Chen Y, Zhao T, Katagiri F, Tang D (2013) BR-signaling kinase1physically associates with flagellin sensing 2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25:1143–1157PubMedPubMedCentralCrossRefGoogle Scholar
  112. Siemens J, Keller I, Sarx J et al (2006) Transcriptome analysis of Arabidopsis club roots indicate a key role for cytokinins in disease development. Mol Plant-Microbe Interact 19:480–494PubMedCrossRefGoogle Scholar
  113. Singh S, Letham DS, LMS P (1992) Cytokinin biochemistry in relation to leaf senescence. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol Plant 86:388–397CrossRefGoogle Scholar
  114. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714PubMedPubMedCentralCrossRefGoogle Scholar
  115. Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V et al (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130–110PubMedPubMedCentralCrossRefGoogle Scholar
  116. Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sticher L, MauchMani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Plant Pathol 35:235–270Google Scholar
  118. Sykorová B, Kuresová G, Daskalova S, Trcková M, Hoyerová K, Raimanová I, Motyka V, Trávnícková A, Elliott M, Kamínek M (2008) Senescence-induced ectopic expression of the A. tumefaciensiptgene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59(2):377–387PubMedCrossRefGoogle Scholar
  119. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tanaka N, Matsuoka M et al (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631PubMedCrossRefGoogle Scholar
  121. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317PubMedCrossRefGoogle Scholar
  122. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26(11):4376–4393PubMedPubMedCentralCrossRefGoogle Scholar
  123. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27(8):2261–2272PubMedPubMedCentralCrossRefGoogle Scholar
  124. Valls M, Genin S, Boucher C (2006) Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2:e82PubMedPubMedCentralCrossRefGoogle Scholar
  125. Van Loon LC (1984) Regulation of pathogenesis and symptom expression in diseased plants by ethylene. In: Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological and applied aspects. MartinusNijhoff/Dr. W. Junk, The Hague, pp 171–180CrossRefGoogle Scholar
  126. Vardhini BV (2013a) Brassinosteroids role for amino acids, peptides and amines modulation in stressed plants – a review. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CAB International, Wallingford, pp 300–316Google Scholar
  127. Vardhini BV (2013b) Comparative study of Sorghum vulgare Pers. Grown in two experimental sites by brassinolide application at vegetative, flowering and grain filling stage. Proc Andhra Pradesh Akad Sci 15:75–79Google Scholar
  128. Vardhini BV, Anuradha S, Rao SSR (2006) Brassinosteroids – a great potential to improve crop productivity. Indian J Plant Physiol 11:1–12Google Scholar
  129. Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75(2):458–461PubMedPubMedCentralCrossRefGoogle Scholar
  131. von Malek B, van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192CrossRefGoogle Scholar
  132. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signalling pathway. Curr Biol 17:1784–1790PubMedCrossRefGoogle Scholar
  133. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integ Genomics 10:533–546CrossRefGoogle Scholar
  134. Wang W, Bai MY, Wang ZY (2014) The brassinosteroid signalling network-a paradigm of signal integration. Curr Opin Plant Biol 2:147–153CrossRefGoogle Scholar
  135. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedPubMedCentralCrossRefGoogle Scholar
  136. Whenham RJ, Fraser RSS, Brown LP, Payne JA (1986) Tobacco mosaic virus-induced increase in abscisic acid concentration in tobacco leaves: intracellular location in light and dark green areas, and relationship to symptom development. Planta 168(1986):592–598PubMedCrossRefGoogle Scholar
  137. Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biol 6(5):529–536PubMedCrossRefGoogle Scholar
  138. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210PubMedCrossRefGoogle Scholar
  139. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC et al (2007) Isolation and molecular characterization of the Triticumaestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732PubMedCrossRefGoogle Scholar
  141. Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376CrossRefGoogle Scholar
  142. Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX et al (2008) Altered disease development in the euimutants and Euiover expressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537PubMedCrossRefGoogle Scholar
  143. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2 TGA5 and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 102:9966–9971PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhu Z, An F, Feng Y, Li P, Xue L, Jiang Z, Kim JM, To TK, Li W et al (2011) Derepression of ethylene-stabilized transcription factors (eiN3/eil1) mediates jasmonate and ethyl-enesignaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zurek DM, Rayle DL, McMorris TC, Clouse SD (1994) Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid regulated stem elongation. Plant Physiol 104:503–513Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vibha Gulyani Checker
    • 1
  • Hemant Ritturaj Kushwaha
    • 2
  • Pragati Kumari
    • 3
    • 4
  • Saurabh Yadav
    • 5
  1. 1.Department of BotanyKirori Mal College, University of DelhiNew DelhiIndia
  2. 2.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Department of Life SciencesSinghania UniversityRajasthanIndia
  4. 4.Indian Agricultural Research Institute (IARI)New DelhiIndia
  5. 5.Department of BiotechnologyHemvati Nandan Bahuguna Garhwal (Central) UniversitySrinagar GarhwalIndia

Personalised recommendations