Skip to main content

Role of NBS-LRR Proteins in Plant Defense

  • Chapter
  • First Online:

Abstract

The NBS-LRR proteins are encoded by one of the largest and most important gene family involved in disease resistance in plants. Many of these NBS-LRR proteins recognize effectors secreted by pathogens directly or indirectly that in turn activate downstream signaling pathways leading to activation of plant defense response against various classes of pathogens including bacterial, fungal, viral, nematode and insect. Defense response by NBS-LRR protein is a sophisticated strategy that induces effector-triggered immunity (ETI). The NBS-LRR proteins comprised of amino-terminal variable domain, a central nucleotide-binding site (NBS) and carboxy-terminal leucine-rich repeats (LRR) domain. The NBS domain binds and hydrolyzes ATP and primarily functions as a signal transduction switch following pathogen recognition. LRRs are highly adaptable structural domains that are involved in protein-protein interactions, and these LRRs can also evolve very different binding specificities. In the following chapter we have discussed in detail about the present knowledge pertaining to NBS-LRR class of proteins and their prospect in crop improvement against diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site- leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci U S A 104:2531–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameline TC, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  CAS  Google Scholar 

  • Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NBLRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gómez-Gómez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R-gene-mediated plant defenses. Science 295(5562):2032–2033

    Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for disease resistance genes isolation: application to Rx2 locus in potato. Plant J 21(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Bent AF (1996) Plant disease resistance: function meets structure. Plant Cell 8:1757–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  PubMed  Google Scholar 

  • Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL (2011) Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci U S A 108:16463–16468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brande BH, Wulff H, Thomas CM, Smoker M, Grant M, Jones JDG (2001) Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell 13:255–272

    Article  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact 13:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the“integrated decoy” hypothesis. Front Plant Sci 5:606

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803e14

    Article  CAS  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    Article  CAS  PubMed  Google Scholar 

  • Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14(10):521–529

    Article  CAS  PubMed  Google Scholar 

  • Collier SM, Hamel LP, Moffett P (2011) Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant-Microbe Interact 24:918–931

    Article  CAS  PubMed  Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92(10):4114–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey DA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6:54–61

    Article  CAS  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy PD, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A 99:2404–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100:8024–8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction under lies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust virulence genes. Proc Natl Acad Sci U S A 103:8888–8893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dropkin VH (1969) The necrotic reaction tomato and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637

    Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnham G, Baulcombe DC (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease resistance gene from potato. Proc Natl Acad Sci U S A 103:18828–18833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends In Genet 16:449–455

    Article  CAS  Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17(6):493–499

    Article  CAS  PubMed  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378

    Article  CAS  PubMed  Google Scholar 

  • Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial-type tomatoes. Proc Am Soc Hort Sci 68:437–442

    Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol 4:301–308

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gururani MA, Jelli V, Upadhyaya CP, Akula N, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    Article  CAS  Google Scholar 

  • Hammond–Kosack KE, Jones JDG (1996) Inducible plant defense mechanisms and resistance gene function. Plant Cell 8:1773–1791

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath MC (2000) Non host resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Inohara C, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281e7

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine rich repeat proteins in plant defenses. Adv Bot Res Inc Adv Plant Pathol 24:120e7

    Google Scholar 

  • Joshi RK, Nayak S (2011) Functional characterization and signal transduction ability of nucleotide- binding site-leucine-rich repeat resistance genes in plants. Genet Mol Res 10(4):2637–2652

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localization of the NB-LRR gene family within the potato genome. BMC Genomics 13:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JD (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajava AW (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277:519–527

    Article  CAS  PubMed  Google Scholar 

  • Kaloshian I (2004) Gene of gene disease resistance: breeding insect pest and pathogen defense. J Chem Ecol 30:2419–2438

    Article  CAS  PubMed  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, Van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2000) When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci 25:509–515

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Finnegan EJ, Ayliffe MA, Ellisai JG (1995) The L6 gene for flax rust resistance 1s related to the Arabidopsis bacterial resistance gene RPSP and the tobacco vira1 resistance gene N. Plant Cell 7:1195e206

    Article  Google Scholar 

  • Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17:1268–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Coaker G (2008) Nuclear trafficking during plant innate immunity. Mol Plant 1:411–422

    Article  CAS  PubMed  Google Scholar 

  • Lukasik-Shreepaathy E, Vossen JH, Tameling WIL, De Vroomen MJ, Cornelissen BJC, Takken FLW (2012) J Exp Bot 63(8):3047–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey D, Holt BFI, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  CAS  PubMed  Google Scholar 

  • Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8(1):124

    Google Scholar 

  • Mayerhofer H, Sautron E, Rolland N, Catty P, Seigneurin-Berny D, Pebay-Peyroula E, Stéphanie R (2016) Structural insights into the nucleotide-binding domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana. PLoS One 11(11):e0165666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  CAS  PubMed  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212.1–212.11

    Article  CAS  Google Scholar 

  • Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NB-LRR encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  CAS  PubMed  Google Scholar 

  • Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE (1990) Gene- for-gene relationships specifying disease resistance in Xanthomonas campestris pv vesicatoria – pepper interactions. Mol Plant-Microbe Int 3:41–47

    Google Scholar 

  • Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel J, Dangl J (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671e83

    Article  Google Scholar 

  • Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene mediated defenses against multiple pathogens. Plant Cell 14:979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandety RS, Caplan JL, Cavanaugh K, Perroud B, Wroblewski T, Michelmore RW, Meyers BC (2013) The role of TIRNBS and TIR-X proteins in plant basal defense responses. Plant Physiol 162:1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K (2005) A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 43:873–888

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449e60

    Article  Google Scholar 

  • Ooijen VG, Mayr G, Albrecht M, Cornelissen BJC, Takken FLW (2008) Transcomplementation, but not physical association of the CC-NBARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol Planta 1:401–410

    Article  CAS  Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CAB Int, Wallingford, p 431

    Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Quisenberry SS, Clement SL (2002) Conservation and use of global plant genetic resources for insect resistance. Aust J Agric Res 53:865–872

    Article  Google Scholar 

  • Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009) In the trenches of plant pathogen recognition: role of NB-LRR proteins. Semin Cell Dev Biol 20:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinink K, Dieleman FL (1989) Comparison of sources of resistance to leaf aphids in lettuce (L. sativa L.) Euphytica 40:21–29

    Google Scholar 

  • Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933

    Article  CAS  PubMed  Google Scholar 

  • Rosello S, Diez MJ, Nuez F (1998) Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509

    Article  Google Scholar 

  • Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant-Microbe Interact 23:497–509

    Article  CAS  PubMed  Google Scholar 

  • Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman AH, Fahima T (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol 13:276–287

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus- specific manner. Proc Natl Acad Sci U S A 103:11856–11861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, Chen JQ (2014) Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol 166:217–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 70:01487

    Google Scholar 

  • Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC, Michelmore RW (2002) Dm3 is one member of a large constitutively-expressed family of NBS-LRR encoding genes. Mol Plant-Microbe Int 15:251–261

    Article  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 180:4–6

    Google Scholar 

  • Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X (2017) Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One 12(2):e0171181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stange C, Matus JT, Domínguez C, Perez-Acle T, Arce-Johnson P (2008) The N-homologue LRR domain adopts a folding which explains the TMVCg- induced HR-like response in sensitive tobacco plants. J Mol Graph Model 26:850–860

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100(117):77–82

    Google Scholar 

  • Takken FW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:1–10

    Article  CAS  Google Scholar 

  • Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    Article  CAS  PubMed  Google Scholar 

  • Tameling WIL, Elzinga SDP, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and Mi-1 are functional ATP bindingproteins with ATPase activity. Plant Cell 14(11):2929–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tameling WIL, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJC, Takken FLW (2006) Mutations in the NBARC domain of I-2 that impair ATP hydrolysis cause auto activation. Plant Physiol 140:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarr DEK, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypesensitive response in tobacco plants. Plant Mol Biol 61:31–45

    Article  CAS  PubMed  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Urbach MJ, Ausubel MF (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A 114(5):1063–1068

    Google Scholar 

  • Van den Ackerveken GF, Van Kan JA, De Wit PJGM (1992) Molecular analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2:359–366

    Google Scholar 

  • Van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R228

    Article  PubMed  Google Scholar 

  • Van der Hoorna RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017

    Article  CAS  Google Scholar 

  • Van der Voort JR, Kanyuka K, Van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp. andigena CPC1673 into cultivated potato. Mol Plant-Microbe Int 12:197–206

    Article  Google Scholar 

  • Van der Vossen EA, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema WJ, Allefs S (2003) An ancient R-gene from the wild species Solanum bulbocastanum confers broad- spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  CAS  Google Scholar 

  • Venter V, Botha AM (2000) Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR-RFLP approach. Theor Appl Genet 100:965–970

    Article  CAS  Google Scholar 

  • Wan H, Yuan W, Ye Q, Wang R, Ruan M, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2012) Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genomics 13:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CIA, Gunčar G, Forwood JK, Teh T, Catanzariti AM, Lawrence GJ, Loughlin FE, Mackay JP, Schirra HJ, Anderson PA, Ellis JG, Dodds PN, Kobe B (2007) Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19(9):2898–2912

    Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad spectrum resistance to powdery mildew. Plant Cell 21(9):2898–2913

    Google Scholar 

  • Wani SH (2010) Inducing fungus-resistance into plants through biotechnology. Not Sci Biol 2(2):14–21

    CAS  Google Scholar 

  • Watts VM (1947) The use of Lycopersicon peruvianum as a source nematode resistance in tomatoes. Proc Am Soc Hort Sci 49:233–234

    Google Scholar 

  • Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang X, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JD (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42(1):95–110

    Article  CAS  PubMed  Google Scholar 

  • Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 5:393–422

    Article  Google Scholar 

  • Young BJD, Roger WI (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249

    Article  CAS  Google Scholar 

  • Zhang YM, Shao ZQ, Wang Q, Hang YY, Xue JY, Wang B, Chen JQ (2016) Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J Integr Plant Biol 58:165–177

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Yin H, Sargent DJ, Malnoy M, Cheng ZM (2015) Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics 16(1):77

    Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415

    Article  CAS  Google Scholar 

  • Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci 102(43):15383–15388

    Google Scholar 

Download references

Acknowledgment

We are thankful to the Director of CSIR-IHBT, Palampur, for his kind support. We acknowledge the financial support from SERB-DST, New Delhi, under the Fast Track Scheme for Young Scientists (YSS/2015/001036). Namo Dubey acknowledges UGC for providing fellowship. The CSIR-IHBT communication number for this article is 4141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, N., Singh, K. (2018). Role of NBS-LRR Proteins in Plant Defense. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_5

Download citation

Publish with us

Policies and ethics