Pathogen-Associated Molecular Patterns and Their Perception in Plants

  • Jitendra Singh Rathore
  • Chaitali Ghosh


In plants, innate immunity, the first line of microbial recognition leading to active defense responses, relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Pattern recognition receptors (PRRs) enable plants to sense non-self molecules exhibited by microbes and raise proper defense responses or establish symbiosis. This recognition leads to PAMP-triggered immunity (PTI). Despite the numerous PAMPs recognized by plants, only a handful of PRRs are characterized. Most of them correspond to the transmembrane proteins with a ligand-binding ectodomain. PRRs interact with additional transmembrane proteins that act as signaling adapters or amplifiers to achieve full functionality. The crucial role of PRRs in antimicrobial immunity is demonstrated by the direct targeting of PRRs and their associated proteins by pathogenic virulence effectors. In recent years the importance of PRR subcellular trafficking to plant immunity has become apparent. PRRs traffic through the endoplasmic reticulum (ER) and the Golgi apparatus to the plasma membrane, where they recognize their cognate ligands. At the plasma membrane, PRRs can be recycled or internalized via endocytic pathways. By using genetic and biochemical tools in combination with bio-imaging, the trafficking pathways and their role in PRR perception of microbial molecules are now being revealed.


Pattern recognition receptor (PRR) Pathogen associated molecular pattern (MAMPs/PAMPs) Receptor like kinase (RLK) Receptor like protein (RLP) Effector triggered immunity (ETI) PRR triggered immunity (PTI) 


  1. Akamatsu A et al (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13(4):465–476PubMedCrossRefGoogle Scholar
  2. Albrecht C et al (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109(1):303–308PubMedCrossRefGoogle Scholar
  3. Bahar O et al (2014) The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. Peer J 2:e242PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bailey BA, Dean JF, Anderson JD (1990) An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol 94(4):1849–1854PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bar M et al (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J Cell Mol Biol 63(5):791–800CrossRefGoogle Scholar
  6. Bauer Z et al (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276(49):45669–45676PubMedCrossRefGoogle Scholar
  7. Bedini E, Parrilli M, Unverzagt C (2002) Oligomerization of a rhamnanic trisaccharide repeating unit of O-chain polysaccharides from phytopathogenic bacteriaGoogle Scholar
  8. Bedini E et al (2005) Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J Am Chem Soc 127(8):2414–2416PubMedCrossRefGoogle Scholar
  9. Belkhadir Y et al (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109(1):297–302PubMedCrossRefGoogle Scholar
  10. Bogdanove AJ et al (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193(19):5450–5464PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefGoogle Scholar
  12. Borner GHH et al (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132(2):568–577PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60(15):4383–4396PubMedCrossRefGoogle Scholar
  14. Braun SG et al (2005) Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Mol Plant-Microbe Interact MPMI 18(7):674–681PubMedCrossRefGoogle Scholar
  15. Brutus A et al (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107(20):9452–9457PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7(4):481–488PubMedCrossRefGoogle Scholar
  17. Cao Y et al (2013) Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity. PLoS Pathog 9(4):e1003313PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chandra S, Stennis M, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272(45):28274–28280PubMedCrossRefGoogle Scholar
  19. Chen X et al (2010) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci U S A 107(17):8029–8034PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen X et al (2014) An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 7(5):874–892PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chinchilla D et al (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18(2):465–476PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chinchilla D et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497–500PubMedCrossRefGoogle Scholar
  23. Chinchilla D et al (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14(10):535–541PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16(1):232PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choi J et al (2014) Identification of a plant receptor for extracellular ATP. Science (New York, NY) 343(6168):290–294CrossRefGoogle Scholar
  26. Choi HW et al (2016) Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLoS Pathog 12(3):e1005518PubMedPubMedCentralCrossRefGoogle Scholar
  27. Conrath U et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact MPMI 19(10):1062–1071PubMedCrossRefGoogle Scholar
  28. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71PubMedCrossRefGoogle Scholar
  29. Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15(4):358–366PubMedCrossRefGoogle Scholar
  30. de Jonge R et al (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109(13):5110–5115PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dempsey DA et al (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156PubMedPubMedCentralCrossRefGoogle Scholar
  32. Denoux C et al (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1(3):423–445PubMedPubMedCentralCrossRefGoogle Scholar
  33. Desaki Y et al (2006) Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol 47(11):1530–1540PubMedCrossRefGoogle Scholar
  34. Desaki Y et al (2012) Positive crosstalk of MAMP signaling pathways in rice cells. PLoS One 7(12):e51953PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548PubMedCrossRefGoogle Scholar
  36. Dou D, Zhou J-M (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12(4):484–495PubMedCrossRefGoogle Scholar
  37. Dow M, Newman M-A, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261PubMedCrossRefGoogle Scholar
  38. Dunning FM et al (2007) Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19(10):3297–3313PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dziarski R, Gupta D (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biol 7(8):232PubMedPubMedCentralCrossRefGoogle Scholar
  40. Erbs G, Newman M-A (2012) The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol Plant Pathol 13(1):95–104PubMedCrossRefGoogle Scholar
  41. Erbs G et al (2008) Peptidoglycan and muropeptides from pathogens agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15(5):438–448PubMedCrossRefGoogle Scholar
  42. Faulkner C et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110(22):9166–9170PubMedPubMedCentralCrossRefGoogle Scholar
  43. Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278(8):6201–6208PubMedCrossRefGoogle Scholar
  44. Felix G et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J Cell Mol Biol 18(3):265–276CrossRefGoogle Scholar
  45. Feng F et al (2012) A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485(7396):114–118PubMedCrossRefGoogle Scholar
  46. Fradin EF et al (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150(1):320–332PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gaulin E et al (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18(7):1766–1777PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gherbi H et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 105(12):4928–4932PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gimenez-Ibanez S et al (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol CB 19(5):423–429PubMedCrossRefGoogle Scholar
  50. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011PubMedCrossRefGoogle Scholar
  51. Gómez-gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in arabidopsis. Plant Cell 13:1155–1163PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gou X et al (2012) Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet 8(1):e1002452PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gross A et al (2005) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165(1):215–226PubMedCrossRefGoogle Scholar
  54. Gust AA et al (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282(44):32338–32348PubMedCrossRefGoogle Scholar
  55. Gutsmann T, Schromm AB, Brandenburg K (2007) The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol IJMM 297(5):341–352PubMedCrossRefGoogle Scholar
  56. Halter T et al (2014) The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr Biol CB 24(2):134–143PubMedCrossRefGoogle Scholar
  57. Hayafune M et al (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A 111(3):E404–E413PubMedPubMedCentralCrossRefGoogle Scholar
  58. Heese A et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104(29):12217–12222PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heiling S et al (2010) Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22(1):273–292PubMedPubMedCentralCrossRefGoogle Scholar
  60. Helft L et al (2011) LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One 6(7):e21614PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 104(25):10732–10736PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103(26):10098–10103PubMedPubMedCentralCrossRefGoogle Scholar
  63. Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155(3):1325–1338PubMedPubMedCentralCrossRefGoogle Scholar
  64. Huffaker A et al (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110(14):5707–5712PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ialenti A et al (2006) A novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36(2):354–360PubMedCrossRefGoogle Scholar
  66. Jehle AK et al (2013) Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Signal Behav 8(12):e27408PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jeppesen MG et al (2005) Crystal structure of the bovine mitochondrial elongation factor Tu.Ts complex. J Biol Chem 280(6):5071–5081PubMedCrossRefGoogle Scholar
  68. Jeter CR et al (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16(10):2652–2664PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jiang Y et al (2013) The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J Cell Mol Biol 73(5):814–823CrossRefGoogle Scholar
  70. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  71. Kadota Y et al (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54(1):43–55PubMedCrossRefGoogle Scholar
  72. Kaku H et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kannenberg EL, Carlson RW (2001) Lipid A and O-chain modifications cause rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39(2):379–391PubMedCrossRefGoogle Scholar
  74. Kauss et al (1999) Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive H(2)O(2)-generating system. Plant Physiol 120(4):1175–1182PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kawchuk LM et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98(11):6511–6515PubMedPubMedCentralCrossRefGoogle Scholar
  76. Korasick DA et al (2010) Novel functions of stomatal cytokinesis-defective 1 (SCD1) in innate immune responses against bacteria. J Biol Chem 285(30):23342–23350PubMedPubMedCentralCrossRefGoogle Scholar
  77. Korner CJ et al (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interact MPMI 26(11):1271–1280PubMedCrossRefGoogle Scholar
  78. Kouzai Y et al (2014) CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol 84(4–5):519–528PubMedCrossRefGoogle Scholar
  79. Krol E et al (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285(18):13471–13479PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kunze G et al (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kyndt T et al (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196(3):887–900PubMedCrossRefGoogle Scholar
  82. Laluk K et al (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23(8):2831–2849PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lambert KN, Allen KD, Sussex IM (1999) Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Mol Plant-Microbe Interact MPMI 12(4):328–336PubMedCrossRefGoogle Scholar
  84. Launholt D et al (2006) Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell 18(11):2904–2918PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li J et al (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110(2):213–222PubMedCrossRefGoogle Scholar
  87. Li C et al (2011) Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci U S A 108(28):11387–11392PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liebrand TWH et al (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci U S A 110(24):10010–10015PubMedPubMedCentralCrossRefGoogle Scholar
  89. Limpens E et al (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science (New York, NY) 302(5645):630–633CrossRefGoogle Scholar
  90. Lin W et al (2013) Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proc Natl Acad Sci U S A 110(29):12114–12119PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lin Z-JD et al (2015) PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses. Plant Physiol 169(4):2950–2962PubMedPubMedCentralGoogle Scholar
  92. Liu T et al (2012) Chitin-induced dimerization activates a plant immune receptor. Science (New York, NY) 336(6085):1160–1164CrossRefGoogle Scholar
  93. Liu Z et al (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc Natl Acad Sci U S A 110(15):6205–6210PubMedPubMedCentralCrossRefGoogle Scholar
  94. Livaja M et al (2008) Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 213(3–4):161–171PubMedCrossRefGoogle Scholar
  95. Lozano-Duran R et al (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2:e00983PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lu D et al (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107(1):496–501PubMedCrossRefGoogle Scholar
  97. Lu D et al (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science (New York, NY) 332(6036):1439–1442CrossRefGoogle Scholar
  98. Madsen EB et al (2011) Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J Cell Mol Biol 65(3):404–417CrossRefGoogle Scholar
  99. Malinovsky FG et al (2014) Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1. Plant Physiol 164(3):1443–1455PubMedPubMedCentralCrossRefGoogle Scholar
  100. Manosalva P et al (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6:7795PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mateos FV, Rickauer M, Esquerre-Tugaye MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant-Microbe Interact MPMI 10(9):1045–1053PubMedCrossRefGoogle Scholar
  102. McDonald C, Inohara N, Nunez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280(21):20177–20180PubMedCrossRefGoogle Scholar
  103. McGurl B et al (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science (New York, NY) 255(5051):1570–1573CrossRefGoogle Scholar
  104. McMichael CM et al (2013) Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. Plant Cell 25(10):3910–3925PubMedPubMedCentralCrossRefGoogle Scholar
  105. Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12(9):1783–1794PubMedPubMedCentralCrossRefGoogle Scholar
  106. Merkle T, Grasser KD (2011) Unexpected mobility of plant chromatin-associated HMGB proteins. Plant Signal Behav 6(6):878–880PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141(4):1666–1675PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J Cell Mol Biol 50(3):500–513CrossRefGoogle Scholar
  109. Mithoe SC et al (2016) Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 17(3):441–454PubMedPubMedCentralCrossRefGoogle Scholar
  110. Miya A et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618PubMedPubMedCentralCrossRefGoogle Scholar
  111. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357PubMedCrossRefGoogle Scholar
  112. Mueller K et al (2012) Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24(5):2213–2224PubMedPubMedCentralCrossRefGoogle Scholar
  113. Munford RS, Varley AW (2006) Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog 2(6):e67PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110(2):203–212PubMedCrossRefGoogle Scholar
  115. Narusaka Y et al (2013) Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8(9)Google Scholar
  116. Narvaez-Vasquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218(3):360–369PubMedCrossRefGoogle Scholar
  117. Newman MA, Daniels MJ, Dow JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol Plant-Microbe Interact MPMI 8(5):778–780PubMedCrossRefGoogle Scholar
  118. Newman M-A et al (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J Cell Mol Biol 29(4):487–495CrossRefGoogle Scholar
  119. Newman M-A et al (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13(2):69–84PubMedCrossRefGoogle Scholar
  120. Newman M-A et al (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nothnagel EA et al (1983) Host-pathogen interactions: XXII. A Galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71(4):916–926PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nuhse TS et al (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J Cell Mol Biol 51(5):931–940CrossRefGoogle Scholar
  123. Nurnberger T et al (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78(3):449–460PubMedCrossRefGoogle Scholar
  124. Ono E et al (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 98(2):759–764PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278(32):30044–30050PubMedCrossRefGoogle Scholar
  126. Pearce G et al (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science (New York, NY) 253(5022):895–897CrossRefGoogle Scholar
  127. Pearce G et al (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411(6839):817–820PubMedCrossRefGoogle Scholar
  128. Pedersen DS, Grasser KD (2010) The role of chromosomal HMGB proteins in plants. Biochim Biophys Acta 1799(1–2):171–174PubMedCrossRefGoogle Scholar
  129. Petutschnig EK et al (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285(37):28902–28911PubMedPubMedCentralCrossRefGoogle Scholar
  130. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700PubMedCrossRefGoogle Scholar
  131. Ramonell K et al (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138(2):1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ranf S et al (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J Cell Mol Biol 68(1):100–113CrossRefGoogle Scholar
  133. Ranf S et al (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16(4):426–433PubMedCrossRefGoogle Scholar
  134. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20(5):537–542PubMedPubMedCentralCrossRefGoogle Scholar
  135. Robatzek S et al (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64(5):539–547PubMedCrossRefGoogle Scholar
  136. Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16(6):1604–1615PubMedPubMedCentralCrossRefGoogle Scholar
  137. Ramos HC, Rumbo M, Sirard J-C (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517PubMedCrossRefGoogle Scholar
  138. Roux M et al (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23(6):2440–2455PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  140. Ryals JA et al (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819PubMedPubMedCentralCrossRefGoogle Scholar
  141. Santiago J, Henzler C, Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science (New York, NY) 341(6148):889–892CrossRefGoogle Scholar
  142. Scheer, Ryan (1999) A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell 11(8):1525–1536PubMedPubMedCentralCrossRefGoogle Scholar
  143. Scheer JM, Ryan CAJ (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci U S A 99(14):9585–9590PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schneider M et al (1996) Systemic acquired resistance in plants. Int Rev Cytol 168:303–340CrossRefGoogle Scholar
  145. Schulze B et al (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285(13):9444–9451PubMedPubMedCentralCrossRefGoogle Scholar
  146. Schweizer P et al (1996) Perception of free cutin monomers by plant cells. Plant J 10(2):331–341CrossRefGoogle Scholar
  147. Schwessinger B et al (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7(4):e1002046PubMedPubMedCentralCrossRefGoogle Scholar
  148. Segonzac C et al (2011) Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol 156(2):687–699PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sejalon-Delmas N et al (1997) Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87(9):899–909PubMedCrossRefGoogle Scholar
  150. Seong S-Y, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4(6):469–478PubMedCrossRefGoogle Scholar
  151. Shi H et al (2013) BR-signaling kinase1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25(3):1143–1157PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shimizu T et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J Cell Mol Biol 64(2):204–214CrossRefGoogle Scholar
  153. Shinya T et al (2012) Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 53(10):1696–1706PubMedCrossRefGoogle Scholar
  154. Silipo A et al (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280(39):33660–33668PubMedCrossRefGoogle Scholar
  155. Silipo A et al (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chembiochem Eur J Chem Biol 9(6):896–904CrossRefGoogle Scholar
  156. Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 4:124PubMedPubMedCentralCrossRefGoogle Scholar
  157. Smith JM et al (2014) Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. Plant Physiol 164(1):440–454PubMedCrossRefGoogle Scholar
  158. Song WY et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, NY) 270(5243):1804–1806CrossRefGoogle Scholar
  159. Song WY et al (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9(8):1279–1287PubMedPubMedCentralCrossRefGoogle Scholar
  160. Song CJ et al (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140(4):1222–1232PubMedPubMedCentralCrossRefGoogle Scholar
  161. Stracke S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962PubMedCrossRefGoogle Scholar
  162. Suharsono U et al (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 99(20):13307–13312PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sun W et al (2012) Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. Plant Cell 24(3):1096–1113PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sun Y, Li L et al (2013a) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science (New York, NY) 342(6158):624–628CrossRefGoogle Scholar
  165. Sun Y, Han Z et al (2013b) Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res 23(11):1326–1329PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tanaka K et al (2014) Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci 5:446PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tang W et al (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science (New York, NY) 321(5888):557–560CrossRefGoogle Scholar
  168. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270PubMedCrossRefGoogle Scholar
  169. Thomma BPHJ, Nurnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tintor N et al (2013) Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci U S A 110(15):6211–6216PubMedPubMedCentralCrossRefGoogle Scholar
  171. Traub S et al (2006) MDP and other muropeptides – direct and synergistic effects on the immune system. J Endotoxin Res 12(2):69–85PubMedGoogle Scholar
  172. Trujillo M et al (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol CB 18(18):1396–1401PubMedCrossRefGoogle Scholar
  173. Umemoto N et al (1997) The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci U S A 94(3):1029–1034PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80(4–5):365–388PubMedCrossRefGoogle Scholar
  175. Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6(5):1405–1418PubMedCrossRefGoogle Scholar
  176. van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  177. Vercauteren I et al (2001) Arabidopsis thaliana genes expressed in the early compatible interaction with root-knot nematodes. Mol Plant-Microbe Interact MPMI 14(3):288–299PubMedCrossRefGoogle Scholar
  178. Veronese P et al (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18(1):257–273PubMedPubMedCentralCrossRefGoogle Scholar
  179. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  180. Wan J et al (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20(2):471–481PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wan J et al (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol 160(1):396–406PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wang GL et al (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact MPMI 9(9):850–855PubMedCrossRefGoogle Scholar
  183. Wang GL et al (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10(5):765–779PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wang Y-S et al (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18(12):3635–3646PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wang G et al (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147(2):503–517PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52(5):837–850PubMedCrossRefGoogle Scholar
  187. Watt SA et al (2006) Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 126(1):78–86PubMedCrossRefGoogle Scholar
  188. Willmann R et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci U S A 108(49):19824–19829PubMedPubMedCentralCrossRefGoogle Scholar
  189. Xu W-H et al (2006) The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J Cell Mol Biol 45(5):740–751CrossRefGoogle Scholar
  190. Xu J et al (2014) A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Plant J Cell Mol Biol 77(2):222–234CrossRefGoogle Scholar
  191. Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14(4):351–357PubMedCrossRefGoogle Scholar
  192. Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103(26):10104–10109PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yamaguchi Y et al (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22(2):508–522PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yamaguchi K et al (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357PubMedCrossRefGoogle Scholar
  195. Zhang J et al (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1(3):175–185PubMedCrossRefGoogle Scholar
  196. Zhang J et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7(4):290–301PubMedCrossRefGoogle Scholar
  197. Zhang W et al (2013) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25(10):4227–4241PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhou X et al (2016) Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ 39(6):1381–1392PubMedCrossRefGoogle Scholar
  199. Zipfel C (2013) Combined roles of ethylene and endogenous peptides in regulating plant immunity and growth. Proc Natl Acad Sci U S A 110(15):5748–5749PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zipfel C et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of BiotechnologyGautam Buddha UniversityGreater NoidaIndia
  2. 2.Department of ZoologyGargi College, University of DelhiNew DelhiIndia

Personalised recommendations