Abstract
Plant pathogens have been divided into two classes, namely, biotrophs and necrotrophs. These pathogens lead to significant economic losses by infecting various crops. Biotrophs complete their life cycle by using the living host cell machinery, while necrotrophs feed on the host cell after killing them. Hemibiotrophs, a third group, show both the forms for obtaining nutrition i.e., early biotrophic stage to later necrotrophic phase. After infecting the plants, both the groups of plant pathogens can trigger and suppress plant immune responses by synthesizing and secreting effector proteins. In case of biotrophic pathogens, effector proteins were found to be Avr proteins (identified by resistance proteins), hrp genes, and cell wall-degrading enzymes, while necrotrophic pathogen has additional effectors called as host-selective toxins. Significant differences have been observed between these two groups in the disease symptoms they cause, their host range, morphogenesis of the infection, production of secondary metabolites and hormones, and nature of plant resistance. Biotrophs possess a sophisticated way of infection, i.e., it enters the host cell using the haustoria, colonizes the intercellular space, and overpowers the host defenses. Necrotrophs have been further grouped into host-specific and broad host range necrotrophs depending on the toxins they secrete. In case of necrotrophic infections, host cell death has been shown to trigger production of hormones like ethylene, abscisic acid, salicylic acid, and jasmonic acid. Both bacterial and fungal plant pathogens belonging to the above mentioned category have been identified. In this chapter we are going to discuss the current state of knowledge about bacterial and fungal biotrophs and necrotrophs.
Keywords
- Bacteria
- Biotrophs
- Effector proteins
- Fungal
- Necrotrophs
- Pathogen
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093
Agrios GN (2005) Plant pathology (5). Elsevier Academic Press, San Francisco
Ahmad S, Soanes DM, Barooah MC, Talbot NJ (2006) Investigating the evolution of fungal virulence by functional genomics. In: Brown AJP (ed) The mycota vol XII. Fungal genomics. Springer, Berlin, pp 35–49
Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698
Alfano JR, Collmer A (1997) The type III (hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179:5655–5662
Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479
Arlat M, Van Gijsegem F, Huet JC, Pernollet JC, Boucher CA (1994) PopA1, a protein which induces a hypersensitive like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13:543–553
Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501
Barras F, Van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234
Bauer DW, Wei Z-M, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpinEChA: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact 8:484–491
Bent AF, Mackey D (2007) Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436
Berestetskiy AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453–465
Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN (2002) Identification of Pseudomonas syringae genes induced during infection of Arabidopsis thaliana. Mol Microbiol 44:73–88
Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744
Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16
Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, Kamoun S (2006) The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165–176
Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I (2013) An iron 13S-lipoxygenase with an a-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8:e64919
Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defenses in Arabidopsis thaliana. Mol Plant Pathol 6:629–639
Büttner D, Bonas U (2006) Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol 9:193–200
Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, Gombar S et al (2005) A high-throughput, near saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102:2549–2554
Cheng Q, Wang H, Xu B, Zhu S, Hu L, Huang M (2014) Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi. BMC Genomics 15:1151
Cho Y (2015) How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryot Cell 14:335–344
Collmer A, Bauer DW (1994) Erwinia chrysanthemi and Pseudomonas syringae: plant pathogens trafficking in virulence proteins. Curr Top Microbiol Immunol 192:43–78
Collmer A, Lindeberg M, Petnicki-Ocwieja T, Schneider DJ, Alfano JR (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol 10:462–469
Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774
Corsaro MM, Evidente A, Lanzetta R, Lavermicocca P, Molinaro A (2001) Structure determination of the phytotoxic mannan exopysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydr Res 330:6208–6215
de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955
Denny TP (1995) Involvement of bacterial polysaccharide in plant pathogenesis. Annu Rev Phytopathol 33:173–197
Desjardins AE, McCormick SP, Appell M (2007) Structure−activity relationships of trichothecene toxins in an Arabidopsis thaliana leaf assay. J Agric Food Chem 55:6487–6492
Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M et al (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100:8024–8029
Di X, Takken FLW, Tintor N (2016) How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front Plant Sci 7:170. https://doi.org/10.3389/fpls.2016.00170
Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V et al (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398
Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant pathogen interactions. Nat Rev Genet 11:539–548
Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG (2009) Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 183:993–1000
Doehlemann G, van der Linde K, Amann D, Schwammbach D, Hof A, Mohanty A et al (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290
Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson R, Thakur P, McDowell J, Wang Y, Tyler BM (2008) Carboxy-terminal motifs common to many oomycete RXLR effectors are required for avirulence and suppression of BAX-mediated programmed cell death by Phytophthora sojae effector Avr1b. Plant Cell 20:118–1133
Evangelisti E, Govetto B, Minet-Kebdani N, Kuhn ML, Attard A, Ponchet M, Panabières F, Gourgues M (2013) The Phytophthora parasitica RXLR effector penetration-specific effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology. New Phytol 199:476–489
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700
Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296
Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227
Göhre V, Robatzek S (2009) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215
Gross DC (1991) Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annu Rev Phytopathol 29:247–278
Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711
Haas BJ, Kamoun S, Zody MC, Jiang RH et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398
Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655
Heath MC (1997) Signalling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot 80:713–720
Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124
Heath MC (2000a) Nonhost resistance and non-specific plant defences. Curr Opin Plant Biol 3:315–319
Heath MC (2000b) Hypersensitive response-related death. Plant Mol Biol 44:321–334
Heath MC (2002) Cellular interactions between biotrophic fungal pathogens and host or nonhost plants. Can J Plant Pathol 24:259–264
Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Hückelhoven R, Doehlemann G (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:1116–1126
Horbach R, Navarro-Quesada AR, Knogge W et al (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62
Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9:371–375
Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127
Idnurm A, Howlett BJ (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2:241–255
Inomata M, Hirai N, Yoshida R, Ohigashi H (2004) The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea. Phytochemistry 65:2667–2678
Jiang RHY, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105:4874–4879
Jin Q, Thilmony R, Zwiesler-Vollick J, He SY (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect 5:301–310
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329
Kaffarnik FA, Jones AM, Rathjen JP, Peck SC (2009) Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. Mol Cell Proteomics 8:145–156
Kahmann R, Basse C (2001) Fungal gene expression during pathogenesis-related development and host plant colonization. Curr Opin Microbiol 4:374–380
Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091
Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E et al (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295
Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101
Kars I, McCalman M, Wagemakers L, van Kan JAL (2005) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641–652
Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309
Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463
Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K et al (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403
Kim K, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee Y (2016) Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci 7:186. https://doi.org/10.3389/fpls.2016.00186
Koeck M, Hardham AR, Dodds PN (2011) The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13:1849–1857
Kraepiel Y, Barny M (2016) Gram-negative phytopathogenic bacteria, all hemibiotrophs after all? Mol Plant Pathol 17:313–316
Laluk K, Mengiste T (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? In: The Arabidopsis book. The American Society of Plant Biologists, Rockville, pp 1–34
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275
Lee S-J, Rose JK (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5:769–772
Liao C-H, Hung HY, Chatterjee AK (1988) An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacterium Pseudomonas viridiflava. Mol Plant-Microbe Interact 1:199–206
Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522
Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4:e1000093–e1000010
Liu T, Ye W, Ru Y, Yang X, Gu B, Tao K et al (2011) Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses. Plant Physiol 155:490–501
Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81
Mattoo S, Lee YM, Dixon JE (2007) Interactions of bacterial effector proteins with host proteins. Curr Opin Immunol 19:392–401
Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13
Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356
Mendgen K, Hahn M (2004) Plant infection and the establishment of fungal biotrophy. Curr Opin Plant Biol 7:356–364
Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618
Mobius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12:390–398
Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1–4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290
Muller O, Schreier PH, Uhrig JF (2008) Identification and characterization of secreted and pathogenesis related proteins in Ustilago maydis. Mol Gen Genomics 279:27–39
Niepold F, Anderson D, Mills D (1985) Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci U S A 82:406–410
Noel L, Thieme F, Nennstie D, Bonas U (2001) cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 41:1271–1281
Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into necrotrophs vs.- biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352
Pedras MS, Ahiahonu PW (2004) Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. J Chem Ecol 30:2163–2179
Pemberton CL, Salmond GPC (2004) The Nep1-like proteins – a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol 5:353–359
Penn CD, Daniel SL (2013) Salicylate degradation by the fungal plant pathogen Sclerotinia sclerotiorum. Curr Microbiol 67:218–225
Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV (2016) Interactions between the powdery mildew effector BEC1054 and barley proteins identify candidate host targets. J Proteome Res 15:826–839
Perombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387
Prell HH, Day PR (2001) Plant–fungal pathogen interaction: a classical and molecular view. Springer, Berlin
Prins TW, Tudzynski P, Tiedemann AV, Tudzynski B, ten Have A, Hansen ME, Tenberge K, van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad JW (ed) Fungal pathology. Kluwer Academic Publishers, Dordrecht, pp 33–64
Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, Doehlemann G (2015) A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell 27:1332–1351
Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615
Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ, Thomma BP, Mesters JR (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. elife 2:e00790
Schulze-Lefert P (2004) Knocking in the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7:377–383
Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667
Shames SR, Finlay BB (2012) Bacterial effector interplay: a new way to view effector function. Trends Microbiol 20:214–219
Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17:1030–1040
Silverstein KA, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138:600–610
Singh R, Dangol S, Chen Y, Choi J, Cho YS, Lee JE, Choi MO, Jwa NS (2016) Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity. Mol Cell 39:426–438
Snoeijers SS, Pérez-García A, Joosten MHAJ, De Wit PJGM (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol 106:493–506
Stam R, Jupe J, Howden AJ, Morris JA, Boevink PC, Hedley PE, Huitema E (2013) Identification and characterization CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS One 8:e59517
Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263
Stergiopoulos I, van den Burg HA, Ökmen B, Beenen HG, van Liere S, Kema GHJ, de Wit PJGM (2010) Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 107:7610–7615
Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJ (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 37:67–93
Stone JK (2001) Necrotroph. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 676–677
Thomma B, Van Esse HP, Crous PW, De Wit P (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393
Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403
Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–1685
Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M, Otani H (2013) Host selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66
Tudzynski P, Sharon A (2003) Fungal pathogenicity genes. In: Arora DDK, Khachatourians GG (eds) Applied mycology and biotechnology vol. 3: fungal genomics. Elsevier, Berlin, pp 187–212
Tyler BM (2009) Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol 11:13–20
Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contribute to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant-Microbe Interact 20:955–965
van Damme M, Bozkurt TO, Cakir C, Schornack S, Sklenar J et al (2012) The Irish potato famine pathogen Phytophthora infestans translocates the CRN8 kinase into host plant cells. PLoS Pathog 8:e1002875
van Esse HP, Bolton MD, Stergiopoulos L, de Wit P, Thomma B (2007) The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant Microbe Interac 20:1092–1101
van Esse HP, van’t Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S et al (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963
Van Gijsegem F, Genin S, Boucher C (1993) Evolutionary conservation of pathogenicity determinants among plant and animal pathogenic bacteria. Trends Microbiol 1:175–180
Van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253
van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162
Vleeshouwers VGAA, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant-Microbe Interact 27:196–206
Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh S-K, Wang M, Bouwmeester K, Vosman B, Visser R (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875
Vleeshouwers VGAA, Finkers R, Budding DJ, Visser M, Jacobs MMJ, van Berloo R, Pel M, Champouret N, Bakker E, Krenek P, Rietman H, Huigen DJ, Hoekstra R, Goverse A, Vosman B, Jacobsen E, Visser RGF (2011) SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species. BMC Plant Biol 11:116
Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733
Wang X, Jiang N, Liu J, Liu W, Wang G-L (2014) The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence 5:722–732
Wang M, Weiberg A, Jin H (2015) Pathogen small RNAs: a new class of effectors for pathogen attacks. Mol Plant Pathol 16:219–223
Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123
Weiberg A, Wang M, Bellinger M, Jin H (2014) Small RNAs: a new paradigm in plant–microbe interactions. Annu Rev Phytopathol 52:495–516
Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG et al (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–119
Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404
Willment JA, Brown GD (2007) C-type lectin receptors in antifungal immunity. Trends Microbiol 16:27–32
Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive evolution has targeted the c-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19:2349–2369
Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W et al (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80
Yang Y, Gabriel DW (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact 8:627–631
Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8:e53901
Zipfel C (2008) Pattern recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16
Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767
Zong N, Xiang T, Zou Y, Chai J, Zhou J-M (2008) Blocking and triggering of plant immunity by Pseudomonas syringae effector AvrPto. Plant Signal Behav 3:583–585
Zwiesler-Vollick J, Plovanich-Jones AE, Nomura K, Brandyopadhyay S, Joardar V et al (2002) Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol 45:1207–1218
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Glossary
- Appressorial pegs
-
It is a specialized cell characteristic of fungal plant pathogens and is used during infection process.
- Effector proteins
-
Proteins secreted by bacterial pathogens during the infection process and help in suppressing the immune system of host.
- Extracellular polysaccharides
-
High molecular weight sugar polymers synthesized by microorganisms. They play important roles in protecting the microorganism and also mediate their pathogenicity.
- Hypersensitive response
-
It is a defense mechanism evoked by pathogens and involves localized cell death to stop the spread of infection.
- Phytohormone
-
Chemicals or signal molecules synthesized by plants and play an important role in their growth and development.
- Phytopathogens
-
Pathogenic bacteria, viruses, or fungi which infect plants and cause many plant diseases.
- Quorum sensing
-
It is a phenomenon of cell-cell communication which helps bacteria to sense the cell density and coordinate their behavior accordingly.
- Small RNAs
-
Noncoding RNA molecules which are less than 200 nucleotide in length and have a role in RNA silencing and regulation of gene expression.
- Virulence
-
The extent of injury caused by pathogen to its host.
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Geeta, Mishra, R. (2018). Fungal and Bacterial Biotrophy and Necrotrophy. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-10-7371-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7370-0
Online ISBN: 978-981-10-7371-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)