Advertisement

Hybrid Application Mapping

  • Andreas Weichslgartner
  • Stefan Wildermann
  • Michael Glaß
  • Jürgen Teich
Chapter
Part of the Computer Architecture and Design Methodologies book series (CADM)

Abstract

Previously, a new class of distributed application run-time mapping algorithms called self-embedding was presented. They are not designed for hard real-time applications which require an upper bound for end-to-end latency. To achieve predictability or even *-predictability, a static (performance) analysis is inevitable to determine and optimize upper and lower bounds. Therefore, a novel hybrid application mapping methodology (consisting of a design-time analysis and run-time mapping) is introduced. In contrast to related work, a packet-switched NoC communication, as in the invasive NoC, is considered.

References

  1. 1.
    Akesson B, Molnos AM, Hansson A, Ambrose JA, Goossens K (2011) Composability and predictability for independent application development, verification, and execution. In: Hübner M, Becker J (eds) Multiprocessor system-on-chip - hardware design and tool integration. Springer, pp 25–56.  https://doi.org/10.1007/978-1-4419-6460-1_2
  2. 2.
    Akesson B, Minaeva A, Sucha P, Nelson A, Hanzálek Z (2015) An efficient configuration methodology for time-division multiplexed single resources. In: Proceedings of real-time and embedded technology and applications symposium (RTAS). IEEE, pp 161–171.  https://doi.org/10.1109/RTAS.2015.7108439
  3. 3.
    Blickle T, Teich J, Thiele L (1998) System-level synthesis using evolutionary algorithms. Des Autom Embed Syst 3(1):23–58.  https://doi.org/10.1023/A:1008899229802 CrossRefGoogle Scholar
  4. 4.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  5. 5.
    Brião EW, Barcelos D, Wagner FR (2008) Dynamic task allocation strategies in MPSoC for soft real-time applications. In: Proceedings of the design, automation and test in Europe (DATE). ACM, pp 1386–1389.  https://doi.org/10.1109/DATE.2008.4484934
  6. 6.
    Carara E, Almeida GM, Sassatelli G, Moraes FG (2011) Achieving composability in NoC-based MPSoCs through QoS management at software level. In: Proceedings of the design, automation and test in Europe (DATE). IEEE, pp 407–412.  https://doi.org/10.1109/DATE.2011.5763071
  7. 7.
    Carvalho E, Calazans N, Moraes F (2007) Heuristics for dynamic task mapping in NoC-based heterogeneous MPSoCs. In: Proceedings of the international workshop on rapid system prototyping (RSP). IEEE, pp 34–40.  https://doi.org/10.1109/RSP.2007.26
  8. 8.
    Che W, Chatha KS (2010) Scheduling of synchronous data flow models on scratchpad memory based embedded processors. In: Proceedings of the international conference on computer-aided design (ICCAD). IEEE, pp 205–212.  https://doi.org/10.1109/ICCAD.2010.5654150
  9. 9.
    Choi J, Oh H, Kim S, Ha S (2012) Executing synchronous dataflow graphs on a SPM-based multicore architecture. In: Proceedings of the design automation conference (DAC). ACM, pp 664–671.  https://doi.org/10.1145/2228360.2228480
  10. 10.
    Chou C, Ogras ÜY, Marculescu R (2008) Energy- and performance-aware incremental mapping for networks on chip with multiple voltage levels. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(10):1866–1879.  https://doi.org/10.1109/TCAD.2008.2003301 CrossRefGoogle Scholar
  11. 11.
    Dally WJ, Towles B (2001) Route packets, not wires: on-chip inteconnection networks. In: Proceedings of the design automation conference (DAC). ACM, pp 684–689.  https://doi.org/10.1145/378239.379048
  12. 12.
    Dick R (2010) Embedded system synthesis benchmarks suite (E3S). http://ziyang.eecs.umich.edu/dickrp/e3s/. Accessed 25 Sep 2016
  13. 13.
    Glaß M, Lukasiewycz M, Haubelt C, Teich J (2010a) Towards scalable system-level reliability analysis. In: Proceedings of the design automation conference (DAC). ACM, pp 234–239.  https://doi.org/10.1145/1837274.1837334
  14. 14.
    Glaß M, Lukasiewycz M, Reimann F, Haubelt C, Teich J (2010b) Symbolic system level reliability analysis. In: Proceedings of the international conference on computer-aided design (ICCAD). IEEE, pp 185–189.  https://doi.org/10.1109/ICCAD.2010.5654134
  15. 15.
    Goossens K, Hansson A (2010) The Aethereal network on chip after ten years: goals, evolution, lessons, and future. In: Proceedings of the design automation conference (DAC). ACM, pp 306–311.  https://doi.org/10.1145/1837274.1837353
  16. 16.
    Goossens K, Dielissen J, Radulescu A (2005) Æthereal network on chip: concepts, architectures, and implementations. IEEE Des Test Comput 22(5):414–421.  https://doi.org/10.1109/MDT.2005.99 CrossRefGoogle Scholar
  17. 17.
    Graf S, Reimann F, Glaß M, Teich J (2014) Towards scalable symbolic routing for multi-objective networked embedded system design and optimization. In: Proceedings of the conference on hardware/software codesign and system synthesis (CODES+ISSS). ACM, pp 2:1–2:10.  https://doi.org/10.1145/2656075.2656102
  18. 18.
    Heisswolf J, König R, Kupper M, Becker J (2013) Providing multiple hard latency and throughput guarantees for packet switching networks on chip. Comput Elect Eng 39(8):2603–2622.  https://doi.org/10.1016/j.compeleceng.2013.06.005 CrossRefGoogle Scholar
  19. 19.
    Henkel J, Bauer L, Dutt N, Gupta P, Nassif SR, Shafique M, Tahoori MB, Wehn N (2013) Reliable on-chip systems in the nano-era: lessons learnt and future trends. In: Proceedings of the design automation conference (DAC). ACM, pp 99:1–99:10.  https://doi.org/10.1145/2463209.2488857
  20. 20.
    Hölzenspies PKF, Hurink J, Kuper J, Smit GJM (2008) Run-time spatial mapping of streaming applications to a heterogeneous multi-processor system-on-chip (MPSOC). In: Proceedings of the design, automation and test in Europe (DATE). ACM, pp 212–217.  https://doi.org/10.1109/DATE.2008.4484688
  21. 21.
    Hu J, Marculescu R (2003) Energy-aware mapping for tile-based NoC architectures under performance constraints. In: Proceedings of the Asia and South Pacific design automation conference (ASPDAC). ACM, pp 233–239.  https://doi.org/10.1145/1119772.1119818
  22. 22.
    Kobbe S, Bauer L, Lohmann D, Schröder-Preikschat W, Henkel J (2011) DistRM: Distributed resource management for on-chip many-core systems. In: Proceedings of the conference on hardware/software codesign and system synthesis (CODES+ISSS). ACM, pp 119–128.  https://doi.org/10.1145/2039370.2039392
  23. 23.
    Lukasiewycz M, Glaß M, Haubelt C, Teich J (2008) Efficient symbolic multi-objective design space exploration. In: Proceedings of the Asia and South Pacific design automation conference (ASPDAC). IEEE, pp 691–696.  https://doi.org/10.1109/ASPDAC.2008.4484040
  24. 24.
    Mariani G, Sima VM, Palermo G, Zaccaria V, Silvano C, Bertels K (2012) Using multi-objective design space exploration to enable run-time resource management for reconfigurable architectures. In: Proceedings of the design, automation and test in Europe (DATE). IEEE, pp 1379–1384.  https://doi.org/10.1109/DATE.2012.6176578
  25. 25.
    Ngo TD, Martin KJ, Diguet JP (2015) Move based algorithm for runtime mapping of dataflow actors on heterogeneous MPSoCs. J Sig Process Syst: 1–18Google Scholar
  26. 26.
    Orsila H, Kangas T, Salminen E, Hämäläinen TD, Hännikäinen M (2007) Automated memory-aware application distribution for multi-processor system-on-chips. J Syst Architecture 53(11):795–815.  https://doi.org/10.1016/j.sysarc.2007.01.013 CrossRefGoogle Scholar
  27. 27.
    Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs. ACM Trans Embed Comput Syst (TECS) 14(1):14:1–14:25.  https://doi.org/10.1145/2680542
  28. 28.
    Schor L, Bacivarov I, Rai D, Yang H, Kang S, Thiele L (2012) Scenario-based design flow for mapping streaming applications onto on-chip many-core systems. In: Proceedings of the international conference on compilers, architecture, and synthesis for embedded systems (CASES). ACM, pp 71–80.  https://doi.org/10.1145/2380403.2380422
  29. 29.
    Shad F, Todd TD, Kezys V, Litva J (2001) Dynamic slot allocation (DSA) in indoor SDMA/TDMA using smart antenna basestation. IEEE/ACM Trans Netw 9(1):69–81.  https://doi.org/10.1109/90.909025 CrossRefGoogle Scholar
  30. 30.
    Shojaei H, Basten T, Geilen M, Davoodi A (2013) A fast and scalable multidimensional multiple-choice knapsack heuristic. ACM Trans Des Autom Electron Syst (TODAES) 18(4):51.  https://doi.org/10.1145/2541012.2541014
  31. 31.
    Singh AK, Kumar A, Srikanthan T (2012) Accelerating throughput-aware runtime mapping for heterogeneous mpsocs. ACM Trans Des Autom Electron Syst (TODAES) 18(1):9.  https://doi.org/10.1145/2390191.2390200
  32. 32.
    Singh AK, Shafique M, Kumar A, Henkel J (2013) Mapping on multi/many-core systems: survey of current and emerging trends. In: Proceedings of the design automation conference (DAC). ACM, pp 1:1–1:10.  https://doi.org/10.1145/2463209.2488734
  33. 33.
    Singh AK, Dziurzanski P, Mendis HR, Indrusiak LS (2017) A survey and comparative study of hard and soft real-time dynamic resource allocation strategies for multi-/many-core systems. ACM Comput Surv 50(2):24:1–24:40.  https://doi.org/10.1145/3057267
  34. 34.
    van Stralen P, Pimentel AD (2010) Scenario-based design space exploration of MPSoCs. In: Proceedings of the international conference on computer design (ICCD). IEEE, pp 305–312.  https://doi.org/10.1109/ICCD.2010.5647727
  35. 35.
    Teich J, Glaß M, Roloff S, Schröder-Preikschat W, Snelting G, Weichslgartner A, Wildermann S (2016) Language and compilation of parallel programs for *-predictable MPSoC execution using invasive computing. In: Proceedings of the international symposium on embedded multicore/many-core systems-on-Chip. IEEE, pp 313–320.  https://doi.org/10.1109/MCSoC.2016.30
  36. 36.
    Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In: Proceedings of the international symposium on circuits and systems (ISCAS), vol 4. IEEE, pp 101–104.  https://doi.org/10.1109/ISCAS.2000.858698
  37. 37.
    Weichslgartner A, Gangadharan D, Wildermann S, Glaß M, Teich J (2014) DAARM: design-time application analysis and run-time mapping for predictable execution in many-core systems. In: Proceedings of the conference on hardware/software codesign and system synthesis (CODES+ISSS). ACM, pp 34:1–34:10.  https://doi.org/10.1145/2656075.2656083
  38. 38.
    Weichslgartner A, Wildermann S, Gangadharan D, Glaß M, Teich J (2017) A design-time/run-time application mapping methodology for predictable execution time in MPSoCs. ArXiv e-prints pp 1–30, arXiv: 1711.05932
  39. 39.
    Wildermann S, Reimann F, Ziener D, Teich J (2011) Symbolic design space exploration for multi-mode reconfigurable systems. In: Proceedings of the conference on hardware/software codesign and system synthesis (CODES+ISSS). ACM, pp 129–138.  https://doi.org/10.1145/2039370.2039393
  40. 40.
    Wildermann S, Glaß M, Teich J (2014) Multi-objective distributed run-time resource management for many-cores. In: Proceedings of the design, automation and test in Europe (DATE), EDAA, pp 1–6.  https://doi.org/10.7873/DATE.2014.234
  41. 41.
    Wildermann S, Weichslgartner A, Teich J (2015) Design methodology and run-time management for predictable many-core systems. In: Proceedings of the workshop on self-organizing real-time systems (SORT). IEEE, pp 103–110.  https://doi.org/10.1109/ISORCW.2015.48
  42. 42.
    Wolkotte PT, Smit GJM, Kavaldjiev N, Becker JE, Becker J (2005) Energy model of networks-on-chip and a bus. In: Proceedings of the international symposium on system-on-chip (ISSOC). IEEE, pp 82–85.  https://doi.org/10.1109/ISSOC.2005.1595650
  43. 43.
    Ykman-Couvreur C, Nollet V, Catthoor F, Corporaal H (2006) Fast multi-dimension multi-choice knapsack heuristic for MP-SoC run-time management. In: Proceedings of the international symposium on system-on-chip (ISSOC), pp 1–4.  https://doi.org/10.1109/ISSOC.2006.321966

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Andreas Weichslgartner
    • 1
  • Stefan Wildermann
    • 1
  • Michael Glaß
    • 2
  • Jürgen Teich
    • 1
  1. 1.Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Embedded Systems/Real-Time SystemsUniversity of UlmUlmGermany

Personalised recommendations