Dosovitskiy, A., Fischer, P., llg, E.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Google Scholar
DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)
Konda, K.R., Memisevic, R.: Learning visual odometry with a convolutional network. VISAPP 1, 486–490 (2015)
Google Scholar
Kendall, A., Grimes, M., Clipolla, R.: Posenet: a convolutional network for real-time 6-DOF camera relocalization. Proceedings of the IEEE international conference on computer vision, pp. 2938–2946 (2015)
Google Scholar
Roberts, R., Nguyen, H., Krishnamurthi, N., Balch, T.: Memory-based learning for visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 47–52 (2008)
Google Scholar
Guizilini, V., Ramos, F.: Semi-parametric learning for visual odometry. Int. J. Robot. Res. 32(5), 526–546 (2013)
CrossRef
Google Scholar
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
CrossRef
Google Scholar
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Leonard, J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)
CrossRef
Google Scholar
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)
CrossRef
Google Scholar
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: The IEEE International Symposium on Mixed and Augmented Reality, pp. 225–234, November 2007
Google Scholar
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 15–22, May 2014
Google Scholar
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: International Conference on Computer Vision, pp. 2320–2327, November 2011
Google Scholar
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Google Scholar
Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visualCinertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)
CrossRef
Google Scholar
Costante, G., Mancini, M., Valigi, P., Ciarfuglia, T.A.: Exploring representation learning with CNNs for frame-to-frame ego-motion estimation. IEEE Robot. Autom. Lett. 1(1), 18–25 (2016)
CrossRef
Google Scholar
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)
Google Scholar
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Conference on Neural Information Processing Systems, pp. 568–576 (2014)
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, pp. 448–456 (2015)
Google Scholar
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, June 2012
Google Scholar
Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), pp. 963–968, June 2011
Google Scholar
Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4), 629–642 (1987)
CrossRef
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Conference on Neural Information Processing Systems, pp. 91–99 (2015)
Google Scholar
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158 (2016)
Google Scholar
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
CrossRef
Google Scholar
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)
CrossRef
Google Scholar
Hong, C., Yu, J., Wan, J., Tao, D., Wang, M.: Multimodal deep autoencoder for human pose recovery. IEEE Trans. Image Process. 24(12), 5659–5670 (2015)
MathSciNet
CrossRef
Google Scholar
Hong, C., Yu, J., Tao, D., Wang, M.: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans. Industr. Electron. 62(6), 3742–3751 (2015)
Google Scholar
Guizilini, V., Ramos, F.: Semi-parametric models for visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 3482–3489, May 2012
Google Scholar