Advertisement

Projective Representation Learning for Discriminative Face Recognition

  • Zuofeng Zhong
  • Zheng Zhang
  • Yong Xu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 772)

Abstract

Face recognition is a challenging issue due to various appearances under different conditions of the face of a person. Meanwhile, conventional face representation methods always lead to high computational complexity. To overcome these shortcomings, in this paper, we propose a novel discriminative projection and representation method for face recognition. This method tries to seek a discriminative representation of the face image on a low-dimension space. Our method consists of two stages, namely face projection and face representation. In the face projection stage, a mapping matrix is produced by jointly maximizing the covariance of dissimilar samples and minimizing the covariance of similar samples. In the face representation stage, the representation result for each face image is obtained by minimizing the sum of representation results of each class. The proposed method achieves two-fold discriminative properties and provides a computational efficient algorithm. The experiments evaluated on diverse face datasets demonstrate that the proposed method has great superiority for face recognition task.

Notes

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61332011, and partially supported by Guangdong Province high-level personnel of special support program (No. 2016TX03X164).

References

  1. 1.
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991, pp. 586–591 (2002)Google Scholar
  2. 2.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATHGoogle Scholar
  3. 3.
    Prasad, J.R., Kulkarni, U.: Gujrati character recognition using weighted k-NN and mean 2 distance measure. Int. J. Mach. Learn. Cybernet. 6(1), 69–82 (2015)CrossRefGoogle Scholar
  4. 4.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Tian, Y., Qi, Z., Ju, X., Shi, Y., Liu, X.: Nonparallel support vector machines for pattern classification. IEEE Trans. Cybern. 44(7), 1067 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2017)CrossRefGoogle Scholar
  7. 7.
    Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 372–386 (2011)CrossRefGoogle Scholar
  8. 8.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)CrossRefGoogle Scholar
  9. 9.
    Lai, Z., Xu, Y., Jin, Z., Zhang, D.: Human gait recognition via sparse discriminant projection learning. IEEE Trans. Circ. Syst. Video Technol. 24(10), 1651–1662 (2014)CrossRefGoogle Scholar
  10. 10.
    Liu, H., Tang, H., Xiao, W., Guo, Z.Y., Tian, L., Gao, Y.: Sequential bag-of-words model for human action classification. CAAI Trans. Intell. Technol. 1(2), 125–136 (2016)CrossRefGoogle Scholar
  11. 11.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision, pp. 471–478 (2012)Google Scholar
  13. 13.
    Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Magazine 24(4), 118–121 (2007)CrossRefGoogle Scholar
  14. 14.
    Naseem, I., Togneri, R., Bennamoun, M.: Robust regression for face recognition. In: International Conference on Pattern Recognition, pp. 1156–1159 (2010)Google Scholar
  15. 15.
    Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circ. Syst. Video Technol. 21(9), 1255–1262 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xu, Y., Zhong, Z., Yang, J., You, J., Zhang, D.: A new discriminative sparse representation method for robust face recognition via \(l_{2}\) regularization. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2233–2242 (2017)CrossRefGoogle Scholar
  17. 17.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 43–58. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0015522 CrossRefGoogle Scholar
  18. 18.
    Law, M.T., Thome, N., Cord, M.: Learning a distance metric from relative comparisons between quadruplets of images. Int. J. Comput. Vision 121, 1–30 (2016)MathSciNetGoogle Scholar
  19. 19.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  20. 20.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  21. 21.
    Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l 1-regularized least squares. IEEE J. Sel. Top. Sig. Process. 1(4), 606–617 (2007)CrossRefGoogle Scholar
  22. 22.
    Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast \(l_1\)-minimization algorithms and an application in robust face recognition: a review. In: IEEE International Conference on Image Processing, pp. 1849–1852 (2010)Google Scholar
  23. 23.
    Yang, A.Y., Zhou, Z., Balasubramanian, A.G., Sastry, S.S., Ma, Y.: Fast \(l_1\) minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234 (2013)CrossRefGoogle Scholar
  24. 24.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Xu, Y., Zhu, Q., Chen, Y., Pan, J.S.: An improvement to the nearest neighbor classifier and face recognition experiments. Int. J. Innov. Comput. Inf. Control 9(2), 543–554 (2013)Google Scholar
  26. 26.
    Liu, Z., Pu, J., Huang, T., Qiu, Y.: A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl. Intell. 39(2), 307–314 (2013)CrossRefGoogle Scholar
  27. 27.
    Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina

Personalised recommendations