The HGF/MET Signaling and Therapeutics in Cancer

  • Douglas P. Thewke
  • Jianqun Kou
  • Makenzie L. Fulmer
  • Qian Xie
Chapter
Part of the Current Human Cell Research and Applications book series (CHCRA)

Abstract

The Met proto-oncogene encodes MET tyrosine kinase protein which is a receptor for hepatocyte growth factor/scatter factor (HGF/SF). HGF binds to and activates MET to regulate diversified cellular and molecular activities such as proliferation, motility, differentiation, and survival. Aberration of HGF/MET signaling plays a proven role in promoting cancer initiation and malignant progression, providing a strong rationale for targeting the MET signaling pathway in the treatment of cancer. Several anti-HGF and anti-MET monoclonal antibodies, as well as small-molecule inhibitors of MET, are being evaluated in clinical trials for the treatment of various cancers. In this chapter, we discuss the role of HGF/MET signaling in cancer development and progression, the strategies for targeting MET signaling, as well as the promises and challenges of MET-targeted therapeutics.

Keywords

Hepatocyte growth factor MET tyrosine kinase receptor Cancer proliferation and invasion Angiogenesis Cancer signaling pathway MET-targeted therapy 

Notes

Acknowledgment

We thank Dr. Robert Wondergem for critical reading. This work is supported by Stephen M. Coffman Charitable Trust and ETSU Start-up Fund (Q. X.).

References

  1. 1.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2002;2(4):289–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Duh FM, et al. Gene structure of the human MET proto-oncogene. Oncogene. 1997;15(13):1583–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu Y. The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization. Gene. 1998;215(1):159–69.PubMedCrossRefGoogle Scholar
  9. 9.
    Ding S, et al. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood. 2003;101(12):4816–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Kajiya K, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 2005;24(16):2885–95.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jung W, et al. Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J Cell Biol. 1994;126(2):485–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver. 1999;19(2):151–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kmiecik TE, et al. Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood. 1992;80(10):2454–7.PubMedGoogle Scholar
  14. 14.
    Liu Y, et al. Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J Pathol. 2007;212(1):12–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodrigues GA, Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene. 1994;9(7):2019–27.PubMedGoogle Scholar
  17. 17.
    Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Weidner KM, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A. 1991;88(16):7001–5.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nakamura T, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):440–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Stoker M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327(6119):239–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Owen KA, et al. Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J. 2010;426(2):219–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem. 2000;275(47):36720–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene. 2000;19(49):5582–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Fixman ED, et al. Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein. J Biol Chem. 1996;271(22):13116–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Weidner KM, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Pelicci G, et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene. 1995;10(8):1631–8.PubMedGoogle Scholar
  29. 29.
    Koch A, et al. The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene. 2005;24(21):3436–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang YW, et al. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene. 2002;21(2):217–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Boccaccio C, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998;391(6664):285–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Graziani A, et al. Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem. 1993;268(13):9165–8.PubMedGoogle Scholar
  33. 33.
    Paumelle R, et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene. 2002;21(15):2309–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell. 2003;14(4):1691–708.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schaeper U, et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149(7):1419–32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Xiao GH, et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A. 2001;98(1):247–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Syed ZA, et al. HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer. 2011;11:180.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Müller M, Morotti A, Ponzetto C. Activation of NF-kappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol. 2002;22(4):1060–72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hui AY, et al. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem. 2009;107(6):1168–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Rahimi N, et al. c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem. 1998;273(50):33714–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang S, et al. Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast cancer. Cancer Biol Ther. 2014;15(5):633–42.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Stella MC, et al. Negative feedback regulation of Met-dependent invasive growth by Notch. Mol Cell Biol. 2005;25(10):3982–96.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shattuck DL, et al. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008;68(5):1471–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Siegfried JM, et al. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res. 1997;57(3):433–9.PubMedGoogle Scholar
  45. 45.
    Sawada K, et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 2007;67(4):1670–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Lo Muzio L, et al. Effect of c-Met expression on survival in head and neck squamous cell carcinoma. Tumour Biol. 2006;27(3):115–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Park S, et al. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol. 2012;27(2):197–207.PubMedGoogle Scholar
  48. 48.
    Koochekpour S, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997;57(23):5391–8.PubMedGoogle Scholar
  49. 49.
    Li G, et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene. 2001;20(56):8125–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferracini R, et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995;10(4):739–49.PubMedGoogle Scholar
  51. 51.
    Tuck AB, et al. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol. 1996;148(1):225–32.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Cappuzzo F, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Okuda K, et al. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99(11):2280–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Ichimura E, et al. Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res. 1996;87(10):1063–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Takanami I, et al. Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: an evaluation of their expression as prognostic markers. Oncology. 1996;53(5):392–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Gumustekin M, et al. HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res. 2012;18(2):209–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Smolen GA, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103(7):2316–21.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pennacchietti S, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Boon EM, et al. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002;62(18):5126–8.PubMedGoogle Scholar
  60. 60.
    Kanteti R, et al. PAX5 is expressed in small-cell lung cancer and positively regulates c-Met transcription. Lab Invest. 2009;89(3):301–14.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ivan M, et al. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene. 1997;14(20):2417–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Gambarotta G, et al. Ets up-regulates MET transcription. Oncogene. 1996;13(9):1911–7.PubMedGoogle Scholar
  63. 63.
    Feng Y, Thiagarajan PS, Ma PC. MET signaling: novel targeted inhibition and its clinical development in lung cancer. J Thorac Oncol. 2012;7(2):459–67.PubMedCrossRefGoogle Scholar
  64. 64.
    Ma PC, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer. 2008;47(12):1025–37.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Krishnaswamy S, et al. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res. 2009;15(18):5714–23.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zaffaroni D, et al. Met proto-oncogene juxtamembrane rare variations in mouse and humans: differential effects of Arg and Cys alleles on mouse lung tumorigenesis. Oncogene. 2005;24(6):1084–90.PubMedCrossRefGoogle Scholar
  67. 67.
    Ma PC, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.PubMedGoogle Scholar
  68. 68.
    Peschard P, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8(5):995–1004.PubMedCrossRefGoogle Scholar
  69. 69.
    Schmidt L, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.PubMedCrossRefGoogle Scholar
  70. 70.
    Ma PC, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65(4):1479–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Cortesina G, et al. Molecular markers study in pTNM of squamous carcinoma of the head and neck. Acta Otorhinolaryngol Ital. 2000;20(6):380–2.PubMedGoogle Scholar
  72. 72.
    Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol. 2006;57(2):145–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Engelman JA, Jänne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2008;14(10):2895–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Nieto MA. Epithelial-mesenchymal transitions in development and disease: old views and new perspectives. Int J Dev Biol. 2009;53(8–10):1541–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Birchmeier W, Birchmeier C. Epithelial-mesenchymal transitions in development and tumor progression. EXS. 1995;74:1–15.PubMedGoogle Scholar
  78. 78.
    De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.PubMedCrossRefGoogle Scholar
  79. 79.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21(5):962–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31(3–4):653–62.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Petrelli A, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416(6877):187–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel). 1996;156(3):217–26.CrossRefGoogle Scholar
  85. 85.
    Fournier TM, et al. Cbl-transforming variants trigger a cascade of molecular alterations that lead to epithelial mesenchymal conversion. Mol Biol Cell. 2000;11(10):3397–410.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Xie Q, et al. Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene. 2005;24(23):3697–707.PubMedCrossRefGoogle Scholar
  87. 87.
    Paik PK, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Merchant M, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A. 2013;110(32):E2987–96.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8(5):629–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Tian X, et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nagai T, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 2011;10(1):169–77.PubMedCrossRefGoogle Scholar
  92. 92.
    Grotegut S, et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Susuki D, et al. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci. 2011;102(12):2164–71.PubMedCrossRefGoogle Scholar
  94. 94.
    Serres M, et al. The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res. 2000;257(2):255–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Onder TT, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda). 2007;22:303–9.Google Scholar
  99. 99.
    Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 2001;105(3):391–402.PubMedCrossRefGoogle Scholar
  100. 100.
    Huber AH, et al. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem. 2001;276(15):12301–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Lickert H, et al. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem. 2000;275(7):5090–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang R, et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153(5):1023–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tward AD, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A. 2007;104(37):14771–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tao J, et al. Modeling a human HCC subset in mice through co-expression of Met and point-mutant beta-catenin. Hepatology. 2016.Google Scholar
  105. 105.
    Howard S, et al. A positive role of cadherin in Wnt/beta-catenin signalling during epithelial-mesenchymal transition. PLoS One. 2011;6(8):e23899.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.PubMedCrossRefGoogle Scholar
  107. 107.
    Roussos ET, et al. AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment. Cancer Res. 2010;70(19):7360–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2):a002915.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.PubMedCrossRefGoogle Scholar
  110. 110.
    Korkaya H, Wicha MS. Cancer stem cells: nature versus nurture. Nat Cell Biol. 2010;12(5):419–21.PubMedCrossRefGoogle Scholar
  111. 111.
    Brabletz T, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98(18):10356–61.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Huang FI, et al. Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis. 2012;33(6):1142–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Fabregat I, Malfettone A, Soukupova J. New insights into the crossroads between EMT and stemness in the context of cancer. J Clin Med. 2016;5(3).Google Scholar
  114. 114.
    Yoshida K, et al. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumour cell line. Res Vet Sci. 2014;97(3):521–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Gimbrone MA Jr, et al. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261–76.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Brem S, et al. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 1976;36(8):2807–12.PubMedGoogle Scholar
  117. 117.
    Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10(7):505–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Gerritsen ME. HGF and VEGF: a dynamic duo. Circ Res. 2005;96(3):272–3.PubMedCrossRefGoogle Scholar
  121. 121.
    Sulpice E, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol Cell. 2009;101(9):525–39.PubMedCrossRefGoogle Scholar
  122. 122.
    Xin X, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Van Belle E, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation. 1998;97(4):381–90.PubMedCrossRefGoogle Scholar
  124. 124.
    Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedCrossRefGoogle Scholar
  125. 125.
    Connolly JO, et al. Rac regulates endothelial morphogenesis and capillary assembly. Mol Biol Cell. 2002;13(7):2474–85.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Royal I, et al. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000;11(5):1709–25.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rosario M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003;13(6):328–35.PubMedCrossRefGoogle Scholar
  128. 128.
    Gu H, Neel BG. The “Gab” in signal transduction. Trends Cell Biol. 2003;13(3):122–30.PubMedCrossRefGoogle Scholar
  129. 129.
    Horiguchi N, et al. Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene. 2002;21(12):1791–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Saucier C, et al. The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci U S A. 2004;101(8):2345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Jimenez B, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6(1):41–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang YW, et al. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A. 2003;100(22):12718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gao CF, et al. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A. 2005;102(30):10528–33.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang H, Keiser JA. Hepatocyte growth factor enhances MMP activity in human endothelial cells. Biochem Biophys Res Commun. 2000;272(3):900–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Koh SA, Lee KH. HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-kappaB activation. Oncol Rep. 2015;34(4):2179–87.PubMedCrossRefGoogle Scholar
  137. 137.
    Monvoisin A, et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer. 2002;97(2):157–62.PubMedCrossRefGoogle Scholar
  138. 138.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.PubMedCrossRefGoogle Scholar
  139. 139.
    Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3).Google Scholar
  140. 140.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.PubMedCrossRefGoogle Scholar
  141. 141.
    Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8(8):604–17.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Weis SM, Cheresh DA. alphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 2011;1(1):a006478.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ephstein Y, et al. Critical role of S1PR1 and integrin beta4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem. 2013;288(4):2191–200.PubMedCrossRefGoogle Scholar
  145. 145.
    Ni X, et al. Interaction of integrin beta4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. J Cell Biochem. 2014;115(6):1187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Hongu T, et al. Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial beta 1 integrin recycling. Nat Commun. 2015;6.Google Scholar
  147. 147.
    Hongu T, et al. Pathological functions of the small GTPase Arf6 in cancer progression: tumor angiogenesis and metastasis. Small GTPases. 2016;7(2):47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Rahman S, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 2005;6(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell. 2001;107(5):643–54.PubMedCrossRefGoogle Scholar
  150. 150.
    Nikolopoulos SN, et al. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell. 2004;6(5):471–83.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63(8):610–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Chan PC, et al. Crosstalk between hepatocyte growth factor and integrin signaling pathways. J Biomed Sci. 2006;13(2):215–23.PubMedCrossRefGoogle Scholar
  153. 153.
    Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol Cell Biol. 2006;26(13):5155–67.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–33.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–75.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76.PubMedCrossRefGoogle Scholar
  157. 157.
    Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.PubMedCrossRefGoogle Scholar
  159. 159.
    Liu Y, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77(3):638–43.PubMedCrossRefGoogle Scholar
  160. 160.
    Tang N, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6(5):485–95.PubMedCrossRefGoogle Scholar
  161. 161.
    Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268(29):21513–8.PubMedGoogle Scholar
  162. 162.
    Eckerich C, et al. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer. 2007;121(2):276–83.PubMedCrossRefGoogle Scholar
  163. 163.
    Kitajima Y, et al. Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci. 2008;99(7):1341–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Yamamoto K, et al. Contribution of Bcl-2, but not Bcl-xL and Bax, to antiapoptotic actions of hepatocyte growth factor in hypoxia-conditioned human endothelial cells. Hypertension. 2001;37(5):1341–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Wang X, et al. Hepatocyte growth factor protects against hypoxia/reoxygenation-induced apoptosis in endothelial cells. J Biol Chem. 2003;279(7):5237–43.PubMedCrossRefGoogle Scholar
  166. 166.
    Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin Cancer Biol. 2003;13(1):83–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Gordon MS, et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16(2):699–710.PubMedCrossRefGoogle Scholar
  169. 169.
    Rosen PJ, et al. A phase Ib study of AMG 102 in combination with bevacizumab or motesanib in patients with advanced solid tumors. Clin Cancer Res. 2010;16(9):2677–87.PubMedCrossRefGoogle Scholar
  170. 170.
    Mok TS, et al. A randomized phase 2 study comparing the combination of Ficlatuzumab and Gefitinib with Gefitinib alone in Asian patients with advanced stage pulmonary adenocarcinoma. J Thorac Oncol. 2016;11(10):1736–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Patnaik A, et al. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer. 2014;111(2):272–80.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Houghton PJ, et al. Initial testing (Stage 1) of TAK-701, a humanized hepatocyte growth factor binding antibody, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2014;61(2):380–2.PubMedCrossRefGoogle Scholar
  173. 173.
    Okamoto W, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther. 2010;9(10):2785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Jin H, et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 2008;68(11):4360–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Tseng JR, et al. Preclinical efficacy of the c-Met inhibitor CE-355621 in a U87 MG mouse xenograft model evaluated by 18F-FDG small-animal PET. J Nucl Med. 2008;49(1):129–34.PubMedCrossRefGoogle Scholar
  176. 176.
    Pacchiana G, et al. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem. 2010;285(46):36149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Liu L, et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin Cancer Res. 2014;20(23):6059–70.PubMedCrossRefGoogle Scholar
  178. 178.
    Salgia R, et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res. 2014;20(6):1666–75.PubMedCrossRefGoogle Scholar
  179. 179.
    Diéras V, et al. Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. Ann Oncol. 2015;26(9):1904–10.PubMedCrossRefGoogle Scholar
  180. 180.
    Spigel DR, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–14.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Garber K. MET inhibitors start on road to recovery. Nat Rev Drug Discov. 2014;13(8):563–5.PubMedCrossRefGoogle Scholar
  182. 182.
    Azuma K, et al. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib. ESMO Open. 2016;1(4):e000063.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Scagliotti G, et al. Phase III multinational, randomized, double-blind, placebo-controlled study of Tivantinib (ARQ 197) plus Erlotinib versus Erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33(24):2667–74.PubMedCrossRefGoogle Scholar
  184. 184.
    Eng C, et al. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy. Int J Cancer. 2016;139(1):177–86.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tolaney SM, et al. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs. 2015;33(5):1108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Trojan J, Zeuzem S. Tivantinib in hepatocellular carcinoma. Expert Opin Investig Drugs. 2013;22(1):141–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Porta C, et al. Tivantinib (ARQ197) in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2015;15(6):615–22.PubMedCrossRefGoogle Scholar
  188. 188.
    Lee J, Tran P, Klempner SJ. Targeting the MET pathway in gastric and oesophageal cancers: refining the optimal approach. Clin Oncol (R Coll Radiol). 2016;28(8):e35–44.CrossRefGoogle Scholar
  189. 189.
    Brandes F, et al. Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer. 2015;15:71.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Gavine PR, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol. 2015;9(1):323–33.PubMedCrossRefGoogle Scholar
  191. 191.
    Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs. 2010;11(12):1477–90.PubMedGoogle Scholar
  192. 192.
    Kazandjian D, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5–11.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Schwab R, et al. Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer. 2014;83(1):109–11.PubMedCrossRefGoogle Scholar
  194. 194.
    Yakes FM, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.PubMedCrossRefGoogle Scholar
  195. 195.
    Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Expert Rev Clin Pharmacol. 2016;9(1):69–79.PubMedCrossRefGoogle Scholar
  196. 196.
    Singh H, et al. U.S. Food and Drug Administration approval: Cabozantinib for treatment of advanced renal cell carcinoma. Clin Cancer Res. 2016.Google Scholar
  197. 197.
    Neal JW, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17(12):1661–71.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Drilon A, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Smith M, et al. Phase III Study of Cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 2016;34(25):3005–13.PubMedCrossRefGoogle Scholar
  200. 200.
    Tolaney SM, et al. Phase II and biomarker study of Cabozantinib in metastatic triple-negative breast cancer patients. Oncologist. 2016.Google Scholar
  201. 201.
    Qian F, et al. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res. 2009;69(20):8009–16.PubMedCrossRefGoogle Scholar
  202. 202.
    Kataoka Y, et al. Foretinib (GSK1363089), a multi-kinase inhibitor of MET and VEGFRs, inhibits growth of gastric cancer cell lines by blocking inter-receptor tyrosine kinase networks. Invest New Drugs. 2012;30(4):1352–60.PubMedCrossRefGoogle Scholar
  203. 203.
    Chen HM, Tsai CH, Hung WC. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget. 2015;6(17):14940–52.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Choueiri TK, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31(2):181–6.PubMedCrossRefGoogle Scholar
  205. 205.
    Logan TF. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr Oncol Rep. 2013;15(2):83–90.PubMedCrossRefGoogle Scholar
  206. 206.
    Rayson D, et al. Canadian Cancer Trials Group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer. Breast Cancer Res Treat. 2016;157(1):109–16.PubMedCrossRefGoogle Scholar
  207. 207.
    Seiwert T, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31(2):417–24.PubMedGoogle Scholar
  208. 208.
    Shah MA, et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One. 2013;8(3):e54014.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Shapiro GI, et al. A phase 1 dose-escalation study of the safety and pharmacokinetics of once-daily oral foretinib, a multi-kinase inhibitor, in patients with solid tumors. Invest New Drugs. 2013;31(3):742–50.PubMedCrossRefGoogle Scholar
  210. 210.
    Yau TC, et al. A phase I/II multicenter study of single-agent Foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2016.Google Scholar
  211. 211.
    Molife LR, et al. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(24):6284–94.PubMedCrossRefGoogle Scholar
  212. 212.
    Nakagawa T, et al. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor. Cancer Sci. 2014;105(6):723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Kosciuczuk EM, et al. Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo. Blood. 2016;128(3):410–4.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Bessudo A, et al. Phase I results of the randomized, placebo controlled, phase I/II study of the novel oral c-MET inhibitor, ARQ 197, irinotecan (CPT-11), and cetuximab (C) in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC) who have received front-line systemic therapy. J Clin Oncol. 2011;29(15_suppl):3582.CrossRefGoogle Scholar
  215. 215.
    Yoshioka H, et al. A randomized, double-blind, placebo-controlled, phase III trial of erlotinib with or without a c-Met inhibitor tivantinib (ARQ 197) in Asian patients with previously treated stage IIIB/IV nonsquamous nonsmall-cell lung cancer harboring wild-type epidermal growth factor receptor (ATTENTION study). Ann Oncol. 2015;26(10):2066–72.PubMedCrossRefGoogle Scholar
  216. 216.
    Koeppen H, et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib±onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res. 2014;20(17):4488–98.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Spigel DR, et al. Treatment Rationale Study Design for the MetLung Trial: a randomized, double-blind phase III study of Onartuzumab (MetMAb) in combination with Erlotinib versus Erlotinib alone in patients who have received standard chemotherapy for Stage IIIB or IV Met-positive non-small-cell lung cancer. Clin Lung Cancer. 2012;13(6):500–4.PubMedCrossRefGoogle Scholar
  218. 218.
    Vashishtha A, et al. Safety data and patterns of progression in met diagnostic subgroups in OAM4558g; a phase II trial evaluating MetMAb in combination with erlotinib in advanced NSCLC. J Clin Oncol. 2011;29(15_suppl):7604.CrossRefGoogle Scholar
  219. 219.
    Yu W, et al. Exploratory biomarker analyses from OAM4558g: a placebo-controlled phase II study of erlotinib with or without MetMAb in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2011;29(15_suppl):7529.CrossRefGoogle Scholar
  220. 220.
    Puzanov I, et al. Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors. Invest New Drugs. 2015;33(1):159–68.PubMedCrossRefGoogle Scholar
  221. 221.
    Ciamporcero E, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.PubMedCrossRefGoogle Scholar
  222. 222.
    Subbiah V, et al. Activity of c-Met/ALK inhibitor Crizotinib and multi-kinase VEGF inhibitor Pazopanib in metastatic gastrointestinal neuroectodermal tumor harboring EWSR1-CREB1 fusion. Oncology. 2016;91(6):348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Adjei AA, et al. Efficacy in selected tumor types in a phase I study of the c-MET inhibitor ARQ 197 in combination with sorafenib. J Clin Oncol. 2011;29(15_suppl):3034.CrossRefGoogle Scholar
  224. 224.
    Eder JP, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Douglas P. Thewke
    • 1
  • Jianqun Kou
    • 1
  • Makenzie L. Fulmer
    • 1
  • Qian Xie
    • 1
  1. 1.Department of Biomedical Sciences,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State UniversityJohnsonUSA

Personalised recommendations