DNA Damage: Cellular Responses, Repair, and Cancer Treatment

  • Brian M. Cartwright
  • Phillip R. Musich
  • Yue Zou
Part of the Current Human Cell Research and Applications book series (CHCRA)


The maintenance of genomic stability in the face of endogenous and exogenous sources of DNA damage requires a robust and comprehensive cellular response. This response, appropriately deemed the DNA damage response (DDR), facilitates changes in the cellular environment promoting and coordinating cell cycle arrest, DNA repair, and cell death in cases of extreme or prolonged genomic insult. Initiation of DDR is primarily elicited by three members of the PIKK (phosphatidylinositol-3-kinase-like kinase) family: ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related), and DNA-PK (DNA-dependent protein kinase). While all three are required for proper genomic maintenance, DNA-PK lacks the capacity to elicit many of the effects induced by ATM or ATR. For this reason, DNA damage signaling (DDS) generally is considered to occur mainly through ATM and ATR. Recent studies, however, have implicated that DNA-PK can regulate DDS through hindrance of ATM-DDS, giving rise to an evolving view in which all three PIKK family members are essential for regulation of DDS, but not its initiation. This chapter presents a discussion of the signaling within human systems induced by DNA damage as well as an overview of the roles of DDS in promoting DDR-mediated cell cycle arrest, DNA damage repair, and changes to other cellular processes. Within this context, the roles of DDR in current and proposed chemotherapeutics will be explored.


DNA Damage DNA Damage Response Cell Cycle Regulation Cancer Chemotherapeutics 


  1. 1.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol. 2013;5(8):a012724.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Marechal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5(9).Google Scholar
  4. 4.
    Sancar A, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Fell VL, et al. Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Sci Rep. 2016;6(37194):37194.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhou Y, et al. Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Mol Cell. 2017;65(1):91–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506.PubMedCrossRefGoogle Scholar
  8. 8.
    Kozlov SV, et al. Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem. 2011;286(11):9107–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Falck J, et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Mailand N, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000;288(5470):1425–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Maya R, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001;15(9):1067–77.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wu X, Shell SM, Zou Y. Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene. 2005;24(29):4728–35.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cortez D, et al. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294(5547):1713–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu S, et al. ATR autophosphorylation as a molecular switch for checkpoint activation. Mol Cell. 2011;43(2):192–202.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kumagai A, et al. TopBP1 activates the ATR-ATRIP complex. Cell. 2006;124(5):943–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Mordes DA, et al. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 2008;22(11):1478–89.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem. 2007;282(38):28036–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou XY, et al. An ATM-independent S-phase checkpoint response involves CHK1 pathway. Cancer Res. 2002;62(6):1598–603.PubMedGoogle Scholar
  21. 21.
    Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3(5):421–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang Q, et al. Identification of a functional domain in a GADD45-mediated G2/M checkpoint. J Biol Chem. 2000;275:36892–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Peng C. Mitotic and G2 checkpoint control: regulation of 14-3-3: protein binding by phosphorylation of Cdc25C on Serine-216. Science. 1997;277(5331):1501–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Harvey SL, et al. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell. 2005;122(3):407–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Zitouni S, et al. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15(7):433–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Mackay DR, Ullman KS. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell. 2015;26(12):2217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem. 2006;281(14):9346–50.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stiff T, et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 2006;25(24):5775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Matsuoka S, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Serrano MA, et al. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene. 2013;32(19):2452–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Wei H, Yu X. Functions of PARylation in DNA damage repair pathways. Genomics Proteomics Bioinformatics. 2016;14(3):131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signaling and DNA repair. Nucleic Acids Res. 2016;44(21):10017–30.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286:35334–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Madabushi A, et al. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase. Biochem J. 2013;456(1):89–98.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yamamori T, et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 2010;38(3):832–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Harrigan JA, et al. The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem. 2003;278(25):22686–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Li K, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283(12):7590–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Scharer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5(10):a012609.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mu D, Sancar A. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem. 1997;272(12):7570–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Sugasawa K, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998;2(2):223–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Fitch ME, et al. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem. 2003;278(47):46906–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Marteijn JA, Hoeijmakers JH, Vermeulen W. Check, Check …Triple Check: multi-step DNA lesion identification by nucleotide excision repair. Mol Cell. 2015;59(6):885–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Li C, et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol Cell. 2015;59(6):1025–34.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Donovan A, et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature. 1994;371(6496):432–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaillard PH, Wood RD. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res. 2001;29(4):872–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gaillard H, Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Biochim Biophys Acta. 2013;1829:141–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Fan W, Luo J. Sirt1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell. 2010;39:247–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee TH, et al. Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair. Oncogene. 2014;33(1):19–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Duckett DR, et al. Human MutSAlpha recognizes damaged DNA base pairs continaing 06-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci U S A. 1996;93:6443–7.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Christmann M, et al. Mechanisms of human DNA repair: an update. Toxicology. 2003;193(1–2):3–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang M, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170–82.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Goodarzi AA, et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 2006;25(16):3880–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Goodwin JF, Knudsen KE. Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 2014;4(10):1126–39.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Neal JA, Meek K. Choosing the right path: does DNA-PK help make the decision. Mutat Res. 2011;711:73–86.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lopez-Contreras AJ, Fernandez-Capetillo O. Signalling DNA damage. INTECH. 2012;8:233–62.Google Scholar
  56. 56.
    Li M, et al. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev. 2013;27(16):1752–68.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433–55.PubMedCrossRefGoogle Scholar
  58. 58.
    Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell. 2013;49(5):795–807.PubMedCrossRefGoogle Scholar
  59. 59.
    Sartori AA, et al. Human CtIP promotes DNA end resection. Nature. 2007;450(7169):509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nimonkar AV, et al. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A. 2008;105(44):16906–11.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Paull TT, Gellert M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell. 1998;1(7):969–79.PubMedCrossRefGoogle Scholar
  62. 62.
    DiTullio RA, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol. 2002;4(12):998–1002.PubMedCrossRefGoogle Scholar
  63. 63.
    Savage KI, Harkin DP. BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J. 2015;282(4):630–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25(43):5864–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Fradet-Turcotte A, et al. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer. 2016;23(10):T1–T17.PubMedCrossRefGoogle Scholar
  66. 66.
    Constantinou A, et al. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 2002;21(20):5577–85.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003;426(6968):870–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Svendsen JM, Harper JW. GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution. Genes Dev. 2010;24(6):521–36.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kaidi A, et al. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329(5997):1348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Clauson C, Scharer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol. 2013;5(10):a012732.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gari K, et al. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol Cell. 2008;29(1):141–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang M, et al. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell. 2010;39(2):259–68.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Meetei AR, Yan Z, Wang W. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle. 2004;3(2):179–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Krishnan V, Tay LS, Ito Y. The Fanconi anemia pathway of DNA repair and human cancer. In: Chen CC, editor. Advances in DNA repair. Rijeka, Croatia: InTech; 2015. p. 255–89.Google Scholar
  75. 75.
    Singh TR, et al. ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res. 2013;73(14):4300–10.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ho GP, et al. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol. 2006;26(18):7005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ishiai M, et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol. 2008;15(11):1138–46.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang X, et al. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2007;27(8):3098–108.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Collins NB, et al. ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood. 2009;113(10):2181–90.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mjelle R, et al. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair. 2015;30:53–67.PubMedCrossRefGoogle Scholar
  81. 81.
    Warmerdam DO, Kanaar R. Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res. 2010;704(1–3):2–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol. 2016;19(1):1–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Wu X, et al. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res. 2006;66(6):2997–3005.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shell SM, et al. Checkpoint kinase ATR promotes nucleotide excision repair of UV-induced DNA damage via physical interaction with xeroderma pigmentosum group A. J Biol Chem. 2009;284(36):24213–22.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li Z, et al. UV-induced nuclear import of XPA is mediated by importin-alpha4 in an ATR-dependent manner. PLoS One. 2013;8(7):e68297.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wu X, et al. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene. 2007;26(5):757–64.PubMedCrossRefGoogle Scholar
  87. 87.
    Jarrett SG, et al. PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. Mol Cell. 2014;54(6):999–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Li Z, et al. XPA-mediated regulation of global nucleotide excision repair by ATR is p53-dependent and occurs primarily in S-phase. PLoS One. 2011;6(12):e28326.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Barckhausen C, et al. Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene. 2014;33(15):1964–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Christmann M, et al. Adaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations. Nucleic Acids Res. 2016;44(22):10727–43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang XW, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995;10(2):188–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang QE, et al. Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair. 2003;2(5):483–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhou J, et al. A role for p53 in base excision repair. EMBO J. 2001;20(4):914–23.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zurer I, et al. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis. 2004;25(1):11–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Romanova LY, et al. The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene. 2004;23(56):9025–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Yu X, et al. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998;273(39):25388–92.PubMedCrossRefGoogle Scholar
  97. 97.
    Huertas P, Jackson SP. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem. 2009;284(14):9558–65.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Steger M, et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell. 2013;50(3):333–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Abedin MJ, et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Diff. 2007;14:500–10.CrossRefGoogle Scholar
  101. 101.
    Elliott A, Reiners JJ Jr. Suppression of autophagy enhances the cytotoxicity of the DNA-damaging aromatic amine p-anilinoaniline. Toxicol Appl Pharmacol. 2008;232(2):169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Apel A, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 2008;68(5):1485–94.PubMedCrossRefGoogle Scholar
  103. 103.
    Alexander A, Kim J, Walker CL. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy. 2010;6(5):672–3.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhao M, Klionsky DJ. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 2011;13:119–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tripathia DN, et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2–mediated suppression of mTORC1. PNAS. 2013;110:E2950–E7.CrossRefGoogle Scholar
  106. 106.
    Zhang J, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17(10):1259–69.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Valentin-Vega YA, Kastan MB. A new role for ATM regulating mitochondrial function and mitophagy. Autophagy. 2012;5:840–1.CrossRefGoogle Scholar
  108. 108.
    Hoyer-Hansen M, Jaattela M. AMP-activated protein kinases: a universal regulator of autophagy? Autophagy. 2007;3:381–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Rodrigues-Vargas JM, et al. Autophagy requires poly(adp-ribosyl)ation-dependent AMPK nuclelar export. Cell Death Diff. 2016;23:2007–18.CrossRefGoogle Scholar
  110. 110.
    Yoon JH, et al. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol. 2012;83:747–57.PubMedCrossRefGoogle Scholar
  111. 111.
    Rajendran R, et al. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol. 2011;2011:1–17.CrossRefGoogle Scholar
  112. 112.
    Pankiv S, et al. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2010;283:6783–9.Google Scholar
  113. 113.
    Czarny P, et al. Autophagy and the DNA damage response. Int J Mol Sci. 2015;16:2641–62.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2011;21:116–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Veuger SJ, Hunter JE, Durkacz BW. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene. 2009;28:832–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol. 2013;3:290.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chang WJ, Alvarez-Gonzalez R. The sequence-specific DNA binding of NFkappa B is reversibly regulated by the automodification reaction of poly (ADP ribose) polymerase 1. J Biol Chem. 2001;276:47664–70.PubMedCrossRefGoogle Scholar
  118. 118.
    Volcic M, et al. NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 2012;40(1):181–95.PubMedCrossRefGoogle Scholar
  119. 119.
    Andersson U, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kodama T, et al. Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Invest. 2011;121(8):3343–56.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yan HX, et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J Hepatol. 2013;59(4):762–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Riley T, et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–12.PubMedCrossRefGoogle Scholar
  123. 123.
    Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 2009;1(5):a001883.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787(5):414–20.PubMedCrossRefGoogle Scholar
  125. 125.
    Brady CA, Attardi LD. p53 at a glance. J Cell Sci. 2010;123(15):2527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Leu JI, et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6(5):443–50.PubMedCrossRefGoogle Scholar
  127. 127.
    Chipuk JE, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309(5741):1732–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Korwek Z, et al. Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells. DNA Repair (Amst). 2012;11(11):864–73.CrossRefGoogle Scholar
  129. 129.
    Imanishi S, et al. Constitutive activation of the ATM/BRCA1 pathway prevents DNA damage-induced apoptosis in 5-azacytidine-resistant cell lines. Biochem Pharmacol. 2014;89(3):361–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Hilton BA, et al. ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomerase Pin1. Mol Cell. 2015;60(1):35–46.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013;32:789–3797.CrossRefGoogle Scholar
  132. 132.
    McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med. 2014;371(18):1725–35.PubMedCrossRefGoogle Scholar
  133. 133.
    O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60(4):547–60.PubMedCrossRefGoogle Scholar
  134. 134.
    Gavande NS, et al. DNA repair targeted therapy: the past or future of cancer treatment? Pharmacol Ther. 2016;160:65–83.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Li L, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10(480).Google Scholar
  136. 136.
    Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. 2015;149:124–38.PubMedCrossRefGoogle Scholar
  137. 137.
    Mishra AK, et al. Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochem Pharmacol. 2015;93(1):25–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Velic D, et al. DNA damage signalling and repair inhibitors: the long-sought-after Achilles’ heel of cancer. Biomol Ther. 2015;5(4):3204–59.Google Scholar
  139. 139.
    Weterings E, et al. A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst). 2016;43:98–106.CrossRefGoogle Scholar
  140. 140.
    Woods D, Turchi JJ. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther. 2013;14(5):379–89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Brian M. Cartwright
    • 1
  • Phillip R. Musich
    • 1
  • Yue Zou
    • 1
  1. 1.Department of Biomedical Sciences, Quillen College of MedicineEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations