Joiner DM, et al. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab. 2013;24(1):31–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205.
CAS
PubMed
CrossRef
Google Scholar
Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.
CAS
PubMed
CrossRef
Google Scholar
Little RD, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.
CAS
PubMed
CrossRef
Google Scholar
Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.
CAS
PubMed
CrossRef
Google Scholar
Van Wesenbeeck L, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet. 2003;72(3):763–71.
PubMed
PubMed Central
CrossRef
Google Scholar
Mani A, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 2007;315(5816):1278–82.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Balemans W, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.
CAS
PubMed
CrossRef
Google Scholar
van Bezooijen RL, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Johnson EB, Hammer RE, Herz J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet. 2005;14(22):3523–38.
CAS
PubMed
CrossRef
Google Scholar
Xiong L, et al. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Proc Natl Acad Sci U S A. 2015;112(11):3487–92.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Leupin O, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mason JJ, Williams BO. SOST and DKK: antagonists of LRP family signaling as targets for treating bone disease. J Osteoporos. 2010;2010, 460120.
Google Scholar
Rey JP, Ellies DL. Wnt modulators in the biotech pipeline. Dev Dyn. 2010;239(1):102–14.
CAS
PubMed
PubMed Central
Google Scholar
Padhi D, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.
CAS
PubMed
CrossRef
Google Scholar
McColm J, et al. Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res. 2014;29(4):935–43.
CAS
PubMed
CrossRef
Google Scholar
Palmiter RD, Brinster RL. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–99.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hogan B. A shared vision. Dev Cell. 2007;13(6):769–71.
CAS
PubMed
CrossRef
Google Scholar
Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346(6287):847–50.
CAS
PubMed
CrossRef
Google Scholar
Takada S, et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 1994;8(2):174–89.
CAS
PubMed
CrossRef
Google Scholar
Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature. 1995;374(6520):350–3.
CAS
PubMed
CrossRef
Google Scholar
Hamilton DL, Abremski K. Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol. 1984;178(2):481–6.
CAS
PubMed
CrossRef
Google Scholar
Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000;26(2):99–109.
CAS
PubMed
CrossRef
Google Scholar
Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70–1.
CAS
PubMed
CrossRef
Google Scholar
Muzumdar MD, et al. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45(9):593–605.
CAS
PubMed
CrossRef
Google Scholar
Zhang M, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12.
CAS
PubMed
CrossRef
Google Scholar
Zhong ZA, et al. Wntless spatially regulates bone development through beta-catenin-dependent and independent mechanisms. Dev Dyn. 2015;244(10):1347–55.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Holmen SL, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280(22):21162–8.
CAS
PubMed
CrossRef
Google Scholar
Regard JB, et al. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4(12).
Google Scholar
Glass, D.A.2nd, et al., Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell, 2005. 8(5): p. 751-764.
CAS
PubMed
CrossRef
Google Scholar
Yadav VK, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825–37.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kode A, et al. Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med. 2014;20(11):1228–9.
CAS
PubMed
CrossRef
Google Scholar
Cui Y, et al. Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med. 2014;20(11):1229–30.
CAS
PubMed
CrossRef
Google Scholar
Cui Y, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684–91.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Riddle RC, et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One. 2013;8(5):e63323.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shen J, Chen D. Recent progress in osteoarthritis research. J Am Acad Orthop Surg. 2014;22(7):467–8.
PubMed
PubMed Central
CrossRef
Google Scholar
Zhu M, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res. 2009;24(1):12–21.
CAS
PubMed
CrossRef
Google Scholar
Ono N, et al. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16(12):1157–67.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Day TF, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.
CAS
PubMed
CrossRef
Google Scholar
Hill TP, et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727–38.
CAS
PubMed
CrossRef
Google Scholar
Zhu M, et al. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum. 2008;58(7):2053–64.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wei W, et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by beta-catenin. Mol Cell Biol. 2011;31(23):4706–19.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Weivoda MM, et al. Wnt Signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 2016;31(1):65–75.
CAS
PubMed
CrossRef
Google Scholar
Winkler DG, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brunkow ME, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maretto S, et al. Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A. 2003;100(6):3299–304.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhong Z, et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci U S A. 2012;109(33):E2197–204.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bassett JH, et al. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet. 2012;8(8):e1002858.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang X, et al. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev Cell. 2015;32(6):719–30.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kakugawa S, et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature. 2015;519(7542):187–92.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brommage R. Genetic Approaches To Identifying Novel Osteoporosis Drug Targets. J Cell Biochem. 2015;116(10):2139–45.
CAS
PubMed
CrossRef
Google Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zetsche B, et al. Cpf1 Is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Baltimore D, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Joeng KS, et al. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum Mol Genet. 2014;23(15):4035–42.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Laine CM, et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368(19):1809–16.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Takada I, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007;9(11):1273–85.
CAS
PubMed
CrossRef
Google Scholar
Greco TL, et al. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 1996;10(3):313–24.
CAS
PubMed
CrossRef
Google Scholar
Stark K, et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372(6507):679–83.
CAS
PubMed
CrossRef
Google Scholar
Spater D, et al. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–49.
PubMed
CrossRef
CAS
Google Scholar
Yamaguchi TP, et al. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126(6):1211–23.
CAS
PubMed
Google Scholar
Yang Y, et al. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003;130(5):1003–15.
CAS
PubMed
CrossRef
Google Scholar
Parr BA, et al. The classical mouse mutant postaxial hemimelia results from a mutation in the Wnt 7a gene. Dev Biol. 1998;202(2):228–34.
CAS
PubMed
CrossRef
Google Scholar
Juriloff DM, et al. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol. 2006;76(8):574–9.
CAS
PubMed
CrossRef
Google Scholar
Bennett CN, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A. 2005;102(9):3324–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Stevens JR, et al. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res. 2010;25(10):2138–47.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zheng HF, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7):e1002745.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Moverare-Skrtic S, et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med. 2014;20(11):1279–88.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yu H, et al. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development. 2010;137(21):3707–17.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Albers J, et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013;200(4):537–49.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Albers J, et al. Control of bone formation by the serpentine receptor Frizzled-9. J Cell Biol. 2011;192(6):1057–72.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Iwaniec UT, et al. PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res. 2007;22(3):394–402.
CAS
PubMed
CrossRef
Google Scholar
Clement-Lacroix P, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A. 2005;102(48):17406–11.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kato M, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303–14.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Holmen SL, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res. 2004;19(12):2033–40.
CAS
PubMed
CrossRef
Google Scholar
Pinson KI, et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000;407(6803):535–8.
CAS
PubMed
CrossRef
Google Scholar
Carter M, et al. Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci U S A. 2005;102(36):12843–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kokubu C, et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development. 2004;131(21):5469–80.
CAS
PubMed
CrossRef
Google Scholar
Kubota T, et al. Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J Bone Miner Res. 2008;23(10):1661–71.
CAS
PubMed
CrossRef
Google Scholar
Karner CM, et al. Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation--a mouse model for Cenani-Lenz syndrome. PLoS One. 2010;5(4):e10418.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Simon-Chazottes D, et al. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics. 2006;87(5):673–7.
CAS
PubMed
CrossRef
Google Scholar
Weatherbee SD, Anderson KV, Niswander LA. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development. 2006;133(24):4993–5000.
CAS
PubMed
CrossRef
Google Scholar
Choi HY, et al. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One. 2009;4(11):e7930.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fu J, et al. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci U S A. 2009;106(44):18598–603.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Morvan F, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21(6):934–45.
CAS
PubMed
CrossRef
Google Scholar
Mukhopadhyay M, et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell. 2001;1(3):423–34.
CAS
PubMed
CrossRef
Google Scholar
Li X, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet. 2005;37(9):945–52.
CAS
PubMed
CrossRef
Google Scholar
Li C, et al. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone. 2011;49(6):1178–85.
CAS
PubMed
CrossRef
Google Scholar
Li X, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.
PubMed
CrossRef
Google Scholar
Niziolek PJ, et al. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone. 2011;49(5):1010–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bodine PV, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18(5):1222–37.
CAS
PubMed
CrossRef
Google Scholar
Morello R, et al. Brachy-syndactyly caused by loss of Sfrp2 function. J Cell Physiol. 2008;217(1):127–37.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Perry WL 3rd, et al. Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. Genetics. 1995;141(1):321–32.
CAS
PubMed
Google Scholar
Vasicek TJ, et al. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics. 1997;147(2):777–86.
CAS
PubMed
PubMed Central
Google Scholar
Dao DY, et al. Axin2 regulates chondrocyte maturation and axial skeletal development. J Orthop Res. 2010;28(1):89–95.
CAS
PubMed
PubMed Central
Google Scholar
Yan Y, et al. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci. 2009;122(Pt 19):3566–78.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yu HM, et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development. 2005;132(8):1995–2005.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Qian L, et al. Tissue-specific roles of Axin2 in the inhibition and activation of Wnt signaling in the mouse embryo. Proc Natl Acad Sci U S A. 2011;108(21):8692–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Itoh S, et al. GSK-3alpha and GSK-3beta proteins are involved in early stages of chondrocyte differentiation with functional redundancy through RelA protein phosphorylation. J Biol Chem. 2012;287(35):29227–36.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hoeflich KP, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.
CAS
PubMed
CrossRef
Google Scholar
Kugimiya F, et al. GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS One. 2007;2(9):e837.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Nelson ER, et al. Role of GSK-3beta in the osteogenic differentiation of palatal mesenchyme. PLoS One. 2011;6(10):e25847.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Joeng KS, et al. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol. 2011;359(2):222–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Guo X, et al. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404–17.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Soshnikova N, et al. Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes Dev. 2003;17(16):1963–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hu H, et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132(1):49–60.
CAS
PubMed
CrossRef
Google Scholar
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231–44.
CAS
PubMed
CrossRef
Google Scholar
Kramer I, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dao DY, et al. Cartilage-specific beta-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res. 2012;27(8):1680–94.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen J, Long F. β-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice. J Bone Miner Res. 2013;8(5):1160–9.
CrossRef
CAS
Google Scholar
Barrott JJ, et al. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A. 2011;108(31):12752–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Liu W, et al. Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS One. 2012;7(3):e32331.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhu X, et al. Wls-mediated Wnts differentially regulate distal limb patterning and tissue morphogenesis. Dev Biol. 2012;365(2):328–38.
CAS
PubMed
CrossRef
Google Scholar
Maruyama T, Jiang M, Hsu W. Gpr177, a novel locus for bone-mineral-density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J Bone Miner Res. 2013;28(5):1150–9.
Google Scholar
Lu C, et al. Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone. 2013;53(2):566–74.
CAS
PubMed
CrossRef
Google Scholar
Akiyama H, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072–87.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mirando AJ, et al. beta-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis. BMC Dev Biol. 2010;10:116.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Lee HH, Behringer RR. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One. 2007;2(5):e450.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Popperl H, et al. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development. 1997;124(15):2997–3005.
CAS
PubMed
Google Scholar
Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2012;64(8):2568–78.
CAS
PubMed
CrossRef
Google Scholar
Oh H, et al. Misexpression of Dickkopf-1 in endothelial cells, but not in chondrocytes or hypertrophic chondrocytes, causes defects in endochondral ossification. J Bone Miner Res. 2012;27(6):1335–44.
CAS
PubMed
CrossRef
Google Scholar
Yao GQ, et al. Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab. 2011;29(2):141–8.
CAS
PubMed
CrossRef
Google Scholar
Cho HY, et al. Transgenic mice overexpressing secreted frizzled-related proteins (sFRP)4 under the control of serum amyloid P promoter exhibit low bone mass but did not result in disturbed phosphate homeostasis. Bone. 2010;47(2):263–71.
CAS
PubMed
CrossRef
Google Scholar
Nakanishi R, et al. Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res. 2008;23(2):271–7.
CAS
PubMed
CrossRef
Google Scholar
Mikasa M, et al. Regulation of Tcf7 by Runx2 in chondrocyte maturation and proliferation. J Bone Miner Metab. 2011;29(3):291–9.
CAS
PubMed
CrossRef
Google Scholar
Hoeppner LH, et al. Lef1DeltaN binds beta-catenin and increases osteoblast activity and trabecular bone mass. J Biol Chem. 2011;286(13):10950–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar