A Comparative Study on Asymmetric, Triangular, and Rectangular Core Large-Mode-Area PCF Designs

  • Netra Dalvi
  • Radhika Ramesh
  • Pravin Joshi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 468)


The main limiting factor of a high-power and high-bit-rate device performance is the onset of nonlinear effects which includes stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), four-wave mixing (FWM), and self-phase modulation (SPM). The solution to these limiting factors is large-mode-area (LMA) fiber. In this paper, asymmetric, triangular, and rectangular core LMA designs are compared and analyzed in terms of confinement loss, effective mode area, dispersion, and mode field diameter (MFD). The structural parameter and mode details were analyzed using the commercially available RSoft full vectorial finite element method (FemSIM™) from Synopsys.


Nonlinear effects LMA Fiber modes Effective mode area Confinement loss Mode field diameter 


  1. 1.
    Kishore K, Sinha RK, Varshney AD (2012) Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber. Opt Lasers Eng 50:182–186CrossRefGoogle Scholar
  2. 2.
    Jiang G, Fu Y, Huang Y (2015) High birefringence rectangular-hole photonic crystal fiber. Opt Fiber Technol 26:163–171CrossRefGoogle Scholar
  3. 3.
    Ferreira MFS (2008) Nonlinear effects in optical fibers: limitations and benefits. Proc SPIE 6793:679302CrossRefGoogle Scholar
  4. 4.
    Broderick NGR, Offerhause HL, Richardson DJ, Sammut RA, Caplen JE, Dong L (1999) Large mode area fibers for high power applications. Opt Fiber Technol 5:185–196CrossRefGoogle Scholar
  5. 5.
    Rastogi V, Chiang KS (2003) Leaky optical fiber for large mode area single mode operation. Electron Lett 39:1110–1112CrossRefGoogle Scholar
  6. 6.
    Dussardier B, Rastogi V, Kumar A, Monnom G (2011) Large mode—area leaky optical fiber fabricated by MCVD. Appl Opt 50:3118–3122CrossRefGoogle Scholar
  7. 7.
    Ademgil H, Haxha S (2011) Bending insensitive large mode area photonic crystal fiber. Optik 122:1950–1956CrossRefGoogle Scholar
  8. 8.
    Gu G, Kong F, Hawkins TW, Jones M, Dong L (2015) Extending mode areas of single-mode all-solid photonic bandgap fibers. Opt Express 23:9147–9156CrossRefGoogle Scholar
  9. 9.
    Reena, Saini TS, Kumar A, Kalra Y, Sinha RK (2016) Rectangular-core large-mode-area photonic crystal fiber for high power applications: design and analysis. Appl OptGoogle Scholar
  10. 10.
    Wang X, Lou S, Lu W (2013) Bending orientation insensitive large mode area photonic crystal fiber with triangular core. IEEE Photonics J 5(4)Google Scholar
  11. 11.
    Napierała M, Nasilowski T, Bereś-Pawlik E, Mergo P, Berghmans F, Thienpont H (2011) Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Opt Express 19(23):22628–22636CrossRefGoogle Scholar
  12. 12.
    Synopsys RSoft Component Device tool manualGoogle Scholar
  13. 13.
    Haxha S, Ademgil H (2008) Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area. Opt Commun 281:278–286CrossRefGoogle Scholar
  14. 14.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Fiber Optic Services (FOS)MumbaiIndia

Personalised recommendations