Review of Thermal Management of an LED for Brain Implants

  • Rabinder Henry
  • Velmathi Guruviah
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 468)


The brain implant based on implantable microdevices is restricted by the temperature changes which may damage the brain tissues. This requires to study of the thermal behavior of the implanted devices. In this case, a light-emitting diode is being implanted for optogenetics study. The paper describes theoretical thermal models to study the heat flow across the diode and biological tissues.


Bioimplant Light-emitting diodes Thermal management Optrodes 



The authors sincerely thank IMOS team at Otto von Guericke University, Magdeburg.


  1. 1.
    Fries RE (2000) Handbook of medical device design. CRC Press, 14 Sept 2000. ISBN-0-8247-0399Google Scholar
  2. 2.
    Greenbaum E, Zhou D (2009) Implantable neural prostheses 1, devices and applications. Springer, Dordrecht Heidelberg. ISBN: 978-0-387-77260-8Google Scholar
  3. 3.
    Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24CrossRefGoogle Scholar
  4. 4.
    Koo M, Park SY, Lee KJ (2012) Biointegrated flexible inorganic light emitting diodes. Nanobiosens Dis Diagn 1:5–15Google Scholar
  5. 5.
    Lazzi G (2005) Thermal effects of bioimplants. IEEE Eng Med Biol MagGoogle Scholar
  6. 6.
    Mrozek S, Vardon F, Geeraerts T (2012) Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 1Google Scholar
  7. 7.
    Instrument Systems GmbH, LEDGON Goniometer, Benutzerhandbuch, Version 1.2 (2008)Google Scholar
  8. 8.
    Henry R, Guruviah V (2016) Review of neuromodulation techniques and technological limitations. IETE Tech Rev 33:368–377 (Taylor & Francis)Google Scholar
  9. 9.
    Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge. ISBN: 9780521865388Google Scholar
  10. 10.
    Gu Y, Narendran N (2003) A noncontact method for determining junction temperature of phosphor-converted white LEDs. Proc SPIE 5187:107–114CrossRefGoogle Scholar
  11. 11.
    Varshni YP (1967) Temperature dependence of the energy gap in semiconductor. Physica 34(1):149–154 CrossRefGoogle Scholar
  12. 12.
    Bakk IP, Borsoi G, Favarolo PA (2012) Thermal management of LED systems. In: Elektrotechnik & Informationstechnik. Springer Verlag, Wien, Oct 2012Google Scholar
  13. 13.
    OSRAM opto semiconductors, LED fundamentals series, internal thermal resistance of LEDs (2011)Google Scholar
  14. 14.
    Technologies of high frequency transistor primer, part iii thermal properties. Agilent Technologies (2012)Google Scholar
  15. 15.
    Huber R (2004) Temperature measurement with thermocouples, Application notes Osram opto semiconductors GmbH, May 2004Google Scholar
  16. 16.
    Chen Q et al (2011) Dynamic junction temperature measurement for high power light emitting diodes. Rev Sci Instrum 82:084904CrossRefGoogle Scholar
  17. 17.
    Kisin MV, Brown RGW, El-Ghoroury HS (2009) Software package for modeling III-nitride QW laser diodes and light emitting devices. In: Proceedings of the COMSOL Conference, BostonGoogle Scholar
  18. 18.
    Xu F, Lu T (2011) Introduction to skin biothermomechanics and thermal pain. Springer, Berlin, pp 24–54CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SENSEVIT UniversityChennaiIndia

Personalised recommendations