Analysis and Critical Parameter Extraction of an LED for Brain Implants

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 468)


The applications of light-emitting diodes as light source have been extended to photodynamic therapy, nerve stimulation, and optical biosensors. This requires the diodes to be implanted inside specifically targeted organs for sensing and therapy using flexible substrates as a system which are biocompatible. The proposed work focuses on determining the parameters to be evaluated for designing of flexible bioimplant for optogenetics study.


Bioimplants Optogenetics Light-emitting diodes 



The authors sincerely thank the guidance and support given by the IMOS team at Otto-Von-Guericke University, Magdeburg, Germany.


  1. 1.
    Nabutovsky Y, Pavek T, Turcott R (2012) Chronic performance of a subcutaneous hemodynamic sensor. Pacing Clin Electrophysiol 35(8):919–926 CrossRefGoogle Scholar
  2. 2.
    Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1):1–18CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Bruck SD (1991) Biostability of materials and implants. J Long Term Eff Med Implants 1(1):89–106Google Scholar
  5. 5.
    Chen D et al (2012) Light-emitting diode-based illumination system for in vitro photodynamic therapy. Int J Photoenergy 1–6Google Scholar
  6. 6.
    Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci Part B Polym Phys 49:18–33CrossRefGoogle Scholar
  7. 7.
    Kim T et al (2013) Injectable cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211CrossRefGoogle Scholar
  8. 8.
    Iwai Y, Honda S et al (2011) A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70(1):124–127CrossRefGoogle Scholar
  9. 9.
    Yizhar O, Fenno LE et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34CrossRefGoogle Scholar
  10. 10.
    Madsen SJ (2013) Optical methods and instrumentation in brain imaging and therapy. Springer, New York. ISBN 978-1-4614-4977-5Google Scholar
  11. 11.
    Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326CrossRefGoogle Scholar
  12. 12.
    Elwassif MM, Kong Q, Vazquez M, Bikson M (2006) Bio-heat transfer model of deep brain stimulation induced temperature changes. Conf Proc IEEE Eng Med Biol Soc 1:3580–3583Google Scholar
  13. 13.
    Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194CrossRefGoogle Scholar
  14. 14.
    Arik M, Becker C, Weaver S, Petroski J (2013) Thermal management of LEDs: package to system. In: Ferguson IT, Narendran N, DenBaars SP, Carrano JC (eds) Third international conference on solid state lighting, Proceedings of SPIE, vol 5187. EPIGAP Optronic GmbH data sheet EOLC-465-24Google Scholar
  15. 15.
    Childs C (2008) Human brain temperature: regulation, measurement and relationship with cerebral trauma, part 1. J Neurosurg 22:486–496CrossRefGoogle Scholar
  16. 16.
    Bakk IP, Borsoi G, Favarolo PA (2012) Thermal management of LED systems. In: Elektrotechnik & Informationstechnik. Springer Verlag, Wien, Oct 2012 Google Scholar
  17. 17.
    Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156CrossRefGoogle Scholar
  18. 18.
    Tay FR, Pashley DH, Loushine RJ, Weller RN, Monticelli F, Osorio R (2006) Self-etching adhesives increase collagenolytic activity in radicular dentin. J Endod 32:862–868CrossRefGoogle Scholar
  19. 19.
    EPIGAP Optronic GmbH, data sheet EOLC (2011) pp 465–24Google Scholar
  20. 20.
    Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.SENSEVIT UniversityChennaiIndia

Personalised recommendations