Skip to main content

Control of Renewable Energy Systems

  • 1887 Accesses

Part of the Renewable Energy Sources & Energy Storage book series (RESES)

Abstract

The utilization of renewable energy system (RES) is becoming more and more popular rapidly to satisfy the ever-increasing energy demand. When a large number of RES is interconnected with traditional power systems, it arises several critical challenges for the operation of the system because of the intermittent nature of RES and generation-load imbalance. These challenges might cause the interruption of steady-state operation of the system and interrupt power supply to consumers. This chapter attempts to present detailed discussions on the necessity of implementation of control techniques, impacts of large-scale RES integration on the operation and protection of the system, the technical challenges that arise due to the large-scale RES interconnection, feeder voltage rise issues, different control techniques to resolve challenging issues and islanded operation.

Keywords

  • Distribution network
  • Voltage regulation
  • Distributed generation
  • Battery
  • Renewable energy
  • Micro grid
  • Islanded operation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7287-1_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-7287-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5

References

  1. Mahmud N, Zahedi A (2016) Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew Sustain Energy Rev 64:582–595

    CrossRef  Google Scholar 

  2. Quezada VM, Abbad JR, Roman TGS (2006) Assessment of energy distribution losses for increasing penetration of distributed generation. IEEE Trans Power Syst 21(2):533–540

    CrossRef  Google Scholar 

  3. Lopes JP, Hatziargyriou N, Mutale J, Djapic P, Jenkins N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electr Power Syst Res 77(9):1189–1203

    CrossRef  Google Scholar 

  4. Zhu Y, Tomsovic K (2002) Adaptive power flow method for distribution systems with dispersed generation. IEEE Trans Power Deliv 17(3):822–827

    CrossRef  Google Scholar 

  5. Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19(4):764–773

    CrossRef  Google Scholar 

  6. Tsikalakis AG, Hatziargyriou ND (2007) Environmental benefits of distributed generation with and without emissions trading. Energy Policy 35(6):3395–3409

    CrossRef  Google Scholar 

  7. Gil HA, Joos G (2008) Models for quantifying the economic benefits of distributed generation. IEEE Trans Power Syst 23(2):327–335

    CrossRef  Google Scholar 

  8. El-Khattam W, Salama MMA (2002) Impact of distributed generation on voltage profile in deregulated distribution system. In Proceedings of the power systems 2002 conference, impact of distributed generation, Clemson, SC, USA, pp 13–15

    Google Scholar 

  9. Ruiz-Romero S, Colmenar-Santos A, Mur-Pérez F, López-Rey Á (2014) Integration of distributed generation in the power distribution network: the need for smart grid control systems, communication and equipment for a smart city—use cases. Renew Sustain Energy Rev 38:223–234

    CrossRef  Google Scholar 

  10. Elmarkabi IM (2004) Control and protection of distribution networks with distributed generators. A dissertation submitted to the Graduate Faculty of North Carolina State University

    Google Scholar 

  11. Voltage control in distribution grids with distributed generation(I). Annals of mechanics and electricity. ICAI Engineers Association (Catholic Institute of Arts and Industries) 13th ICAI April 2012. (Revista Anales de la asociación de ingenierosdelICAI). http://www.revista-anales.es/web/n_13/seccion_3.html; 13 Apr 2012. Accessed 16 Feb 13

  12. Zahedi A (2011) A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid. Renew Sustain Energy Rev 15(9):4775–4779

    CrossRef  Google Scholar 

  13. Dugan RC, McGranaghan MF, Beaty HW (1996) Electrical power systems quality. McGraw-Hill, New York, NY, p c1996

    Google Scholar 

  14. Chen Z, Kong W (2007) Protection coordination based on a multi-agent for distribution power system with distribution generation units. In: International workshop on next generation regional energy system development

    Google Scholar 

  15. Liew SN, Strbac G (2002) Maximising penetration of wind generation in existing distribution networks. IEE Proc-Gener, Transm Distrib 149(3):256–262

    CrossRef  Google Scholar 

  16. Hird CM, Leite H, Jenkins N, Li H (2004) Network voltage controller for distributed generation. IEE Proc-Gener, Transm Distrib 151(2):150–156

    CrossRef  Google Scholar 

  17. Echavarría R, Claudio A, Cotorogea M (2007) Analysis, design, and implementation of a fast on-load tap changing regulator. IEEE Trans Power Electron 22(2):527–534

    CrossRef  Google Scholar 

  18. Mahmud N, Zahedi A, Mahmud A (2017) A cooperative operation of novel PV inverter control scheme and storage energy management system based on ANFIS for voltage regulation of grid-tied PV system. IEEE Trans Indus Inform

    Google Scholar 

  19. Mahmud N, Zahedi A, Mahmud A (2016) Dynamic voltage regulation of grid-tied renewable energy system with ANFIS. In: Australasian universities power engineering conference (AUPEC), 2016, pp 1–6. IEEE

    Google Scholar 

  20. Wood AJ, Wollenberg BF (2012) Power generation, operation, and control. Wiley, USA

    Google Scholar 

  21. Mahmud N, Zahedi A, Mahmud A (2016) ANFISPID-based voltage regulation strategy for grid-tied renewable DG system with ESS. In: Innovative smart grid technologies-Asia (ISGT-Asia), 2016 IEEE, pp 81–86. IEEE

    Google Scholar 

  22. McArthur SD, Davidson EM (2005) Concepts and approaches in multi-agent systems for power applications. In: Proceedings of the 13th international conference on intelligent systems application to power systems, 2005, pp 5-pp. IEEE

    Google Scholar 

  23. Rahman MS, Hossain MJ, Rafi FHM, Lu J (2016) A multi-purpose interlinking converter control for multiple hybrid AC/DC microgrid operations. In: Innovative smart grid technologies-Asia (ISGT-Asia), 2016 IEEE, pp 221–226. IEEE

    Google Scholar 

  24. Wang C, Nehrir MH (2008) Power management of a stand-alone wind/photovoltaic/fuel cell energy system. IEEE Trans Energy Convers 23(3):957–967

    CrossRef  Google Scholar 

  25. Alvial-Palavicino C, Garrido-Echeverría N, Jiménez-Estévez G, Reyes L, Palma-Behnke R (2011) A methodology for community engagement in the introduction of renewable based smart microgrid. Energy Sustain Dev 15(3):314–323

    CrossRef  Google Scholar 

  26. Bahrani B (2008) Islanding detection and control of islanded single and two-parallel distributed generation units (Doctoral dissertation)

    Google Scholar 

  27. Ieee, IEEE standard conformance test procedure for equipment interconnecting distributed resources with electric power systems, July 2005, ISBN 0738147362

    Google Scholar 

  28. Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3(4):1963–1976

    CrossRef  Google Scholar 

  29. Ambrosio R, Widergren S (2007) A framework for addressing interoperability issues. In: Power engineering society general meeting, 2007. IEEE, pp. 1–5. IEEE

    Google Scholar 

  30. Guerrero JM, Vasquez JC, Matas J, Castilla M, de Vicuna LG (2009) Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Trans Industr Electron 56(3):726–736

    CrossRef  Google Scholar 

  31. Guerrero JM, Vasquez JC, Matas J, De Vicuña LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Industr Electron 58(1):158–172

    CrossRef  Google Scholar 

  32. Rahman MS, Hossain MJ, Lu J (2016) Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations. Energy Convers Manag 122:488–503

    CrossRef  Google Scholar 

  33. Guerrero JM, Matas J, De Vicuna LGDV, Castilla M, Miret J (2006) Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans Industr Electron 53(5):1461–1470

    CrossRef  Google Scholar 

  34. Guerrero JM, Matas J, de Vicuna LG, Castilla M, Miret J (2007) Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans Industr Electron 54(2):994–1004

    CrossRef  Google Scholar 

  35. Guerrero JM, De Vicuna LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Industr Electron 52(4):1126–1135

    CrossRef  Google Scholar 

  36. Guerrero JM, De Vicuña LG, Miret J, Matas J, Cruz J (2004) Output impedance performance for parallel operation of UPS inverters using wireless and average current-sharing controllers. In: Power electronics specialists conference, 2004. PESC 04. 2004 IEEE 35th annual, vol 4, pp 2482–2488. IEEE

    Google Scholar 

  37. Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831

    CrossRef  Google Scholar 

  38. Rahman MS, Hossain MJ, Rafi FHM, Lu J (2016) EV charging in a commercial hybrid AC/DC microgrid: Configuration, control and impact analysis. In: Australasian Universities power engineering conference (AUPEC), 2016, pp 1–6. IEEE

    Google Scholar 

  39. Diaz G, Gonzalez-Moran C, Gomez-Aleixandre J, Diez A (2010) Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Trans Power Syst 25(1):489–496

    CrossRef  Google Scholar 

  40. Lopes JP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    CrossRef  Google Scholar 

  41. Yu X, Khambadkone AM, Wang H, Terence STS (2010) Control of parallel-connected power converters for low-voltage microgrid—part I: a hybrid control architecture. IEEE Trans Power Electron 25(12):2962–2970

    CrossRef  Google Scholar 

  42. Delghavi MB, Yazdani A (2011) An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Trans Power Delivery 26(3):1764–1773

    CrossRef  Google Scholar 

  43. Kim J, Guerrero JM, Rodriguez P, Teodorescu R, Nam K (2011) Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid. IEEE Trans Power Electron 26(3):689–701

    CrossRef  Google Scholar 

  44. Zhong QC (2013) Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans Industr Electron 60(3):936–945

    CrossRef  Google Scholar 

  45. Marwali MN, Jung JW, Keyhani A (2004) Control of distributed generation systems-Part II: Load sharing control. IEEE Trans Power Electron 19(6):1551–1561

    CrossRef  Google Scholar 

  46. Lee TL, Cheng PT (2007) Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network. IEEE Trans Power Electron 22(5):1919–1927

    CrossRef  Google Scholar 

  47. Sao CK, Lehn PW (2005) Autonomous load sharing of voltage source converters. IEEE Trans Power Delivery 20(2):1009–1016

    CrossRef  Google Scholar 

  48. Sao CK, Lehn PW (2008) Control and power management of converter fed microgrids. IEEE Trans Power Syst 23(3):1088–1098

    CrossRef  Google Scholar 

  49. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625

    CrossRef  Google Scholar 

  50. Cheng YJ, Sng EKK (2006) A novel communication strategy for decentralized control of paralleled multi-inverter systems. IEEE Trans Power Electron 21(1):148–156

    CrossRef  Google Scholar 

  51. Sun X, Lee YS, Xu D (2003) Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme. IEEE Trans Power Electron 18(3):844–856

    CrossRef  Google Scholar 

  52. Sun X, Wong LK, Lee YS, Xu D (2006) Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans Circuits Syst II Express Briefs 53(1):56–61

    CrossRef  Google Scholar 

  53. Wu TF, Chen YK, Huang YH (2000) 3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Trans Industr Electron 47(2):273–281

    CrossRef  Google Scholar 

  54. Hajimiragha AH, Zadeh MR (2013) Research and development of a microgrid control and monitoring system for the remote community of Bella Coola: challenges, solutions, achievements and lessons learned. In: International conference on smart energy grid engineering (SEGE), 2013 IEEE, pp 1–6. IEEE

    Google Scholar 

  55. Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6(3)

    Google Scholar 

  56. Rahman MS, Rafi F, Hossain M, Lu J (2015) Power control and monitoring of the smart grid with evs. Veh Grid: Linking Electric Veh Smart Grid 79:107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasif Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mahmud, N., Zahedi, A., Shamiur Rahman, M. (2018). Control of Renewable Energy Systems. In: Islam, M., Roy, N., Rahman, S. (eds) Renewable Energy and the Environment. Renewable Energy Sources & Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-10-7287-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7287-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7286-4

  • Online ISBN: 978-981-10-7287-1

  • eBook Packages: EnergyEnergy (R0)