Burany N (1989) Safe control of four-quadrant switches. Conference Records of IEEE- Industry Applications Society Annual Meeting (IAS), 1-5 Oct 1989, San Diego, California, USA, pp 1190–1194
Google Scholar
Empringham L, Wheeler PW, Clare JC (1998) Intelligent commutation of matrix converter Bi-directional switch cells using novel gate drive techniques. Proceedings of power electronics specialists conference (PESC),18–21 May 1998, Fukuoka, Japan, pp 707–713
Google Scholar
Empringham L, Wheeler PW, Clare JC (2000) A matrix converter induction motor drive using intelligent gate drive level current commutation techniques. Proceedings of industry applications conference (IAC), pp 1936–1941
Google Scholar
Iseghem PV (2008) CAS/CASR/CKSR series current transducers insulated highly accurate measurements from 1.5 to 50 ARMS. Available https://www.digikey.com.au/Web%20Export/Supplier%20Content/LEM_398/PDF/LEM_CAS_CASR_CKSR.pdf?redirected=1
Lettl J, Linhart L, Bauer L (2011) Matrix converter commutation time reduction. PIERS proceedings
Google Scholar
Ziogas PD, Khan SI, Rashid MH (1986) Analysis and design of forced commutated cycloconverter Structures with improved transfer characteristics. IEEE Trans Ind Appl 33(3):271–280
Google Scholar
Neft CL, Schauder CD (1992) Theory and design of a 30-Hp matrix converter. IEEE Trans Ind Appl 28(3):546–551
CrossRef
Google Scholar
Beasant RR, Beattie WC, Refsum A (1990) An approach to the realisation of a high power Venturini converter. 21st Annual IEEE Conference on Power Electronics Specialists (PESC), San Antonio, TX, USA, 1990, pp 291–297
Google Scholar
Wheeler PW, Grant DA (1993) A low loss matrix converter for AC variable-speed drives. Fifth European conference on power electronics and applications, 1993, Brighton, UK, pp 27–32
Google Scholar
Wheeler PW, Rodriguez J, Clare JC, Empringham L, Weinstein A (2002) Matrix converters: a technology review. IEEE Trans Ind Electron 49(2):276–288
CrossRef
Google Scholar
Scott MJ, Fu L, Yao C, Zhang X, Xu L, Wang J, Zamora RD (2014) Design considerations for wide band gap based motor drive systems. IEEE international electric vehicle conference (IEVC), 17–19 Dec 2014, Michele Ceccucci, Italy, pp 1–6
Google Scholar
Bernet S, Matsuo T, Lipo TA (1996) A matrix converter using reverse blocking NPTIGBT’s and optimised pulse patterns. IEEE power electronics specialists conference (PESC), June 1996, Baveno, Italy, pp 107–113
Google Scholar
Pan CT, Chen TC, Shieh JJ (1993) A zero switching loss matrix converter. 24th annual IEEE power electronics specialists conference (PESC), 20–24 June 1993, Seattle, WA, USA, pp 545–550
Google Scholar
Huang X, Du W, Lee FC, Li Q, Liu Z (2016) Avoiding Si MOSFET Avalanche and achieving zero-voltage switching for cascade GaN devices. IEEE Trans Power Electron 31(1):593–600
CrossRef
Google Scholar
Klumpner C, Nielsen P, Boldea I, Blaabjerg F (2000) New steps towards a low-cost power electronic building block for matrix converters. Proceedings of industry applications society annual meeting (IAS), 08–12 Oct 2000, Rome, Italy, pp 1964–1971
Google Scholar
Richmond J (2003) Hard-switched silicon IGBTs, cut switching losses in half with silicon carbide Schottky diodes. Available http://www.cree.com
Nakazawa M, Miyanagi T, Iwamoto S (2012) Hybrid Si-IGBT and SiC-SBD modules. Available http://www.fujielectric.com
Ozpineci B, Chinthavali M, Tolbert L, Kashyap A, Mantooth H (2009) A 55-kW three-phase inverter with Si IGBTs and SiC Schottky diodes. IEEE Trans Ind Electron 45(1):278–285
Google Scholar
Veereddy D, Lieser E, Gangi MD (2011) 1200 V/100 A Si IGBT/SiC diode co-pack cuts switching losses. Available http://powerelectronics.com
Empringham L, De Lillo L, Schulz M (2014) Design challenges in the use of silicon carbide JFETs in matrix converter applications. IEEE Trans Power Electron 29(5):2563–2573
CrossRef
Google Scholar
ROHM (2014) Application note-SiC power devices and modules. Available http://pdf.directindustry.com/pdf/rohm-semiconductor/application-note-sic-power-devices-modules/13683–594485.html
Josifovic I, Gerber JP, Ferreira JA (2012) Improving SiC JFET switching behavior under influence of circuit parasitic. IEEE Trans Power Electron 27(8):3843–3854
CrossRef
Google Scholar
Sheridan DC, Ritenour A, Kelley R, Bondarenko V, Casady JB (2010) Advances in SiC VJFETs for renewable and high-efficiency power electronics applications. In: proceedings international power electronic conference (ECCE), 21–24 June 2010, Sapporo, Japan, pp 3254–3258
Google Scholar
Li Y, Alexandrov P, Zhao JH (2008) 1.88-mΩ cm2 1650-V normally on 4H-SiC TI-VJFET. IEEE Trans on Electron Dev 55(8):1880–1886
Google Scholar
Veliadis V, Chen LS, Stewart EE, McCoy M, McNutt T, Van Campen S, Clarke C, De Salvo G (2005) 2.1 mΩ cm2, 1.6 kV 4H-silicon carbide VJFET for power applications. In: proceedings semiconductor device research symposium, 07–09 Dec 2005, Bethesda, MD, USA, pp 166–167
Google Scholar
Lai JS, Yu H, Zhang J, Alexandrov P, Li Y, Zhao JH, Sheng K, Hefner A, Young M (2005) Characterization of normally-off SiC vertical JFET devices and inverter circuits. In: proceedings industry applications conference (IAC), 02–06 Oct 2005, Kowloon, Hong Kong, China, pp 404–409
Google Scholar
Shillington R, Gaynor M, Harrison M, Heffernan B (2010) Applications of silicon carbide JFETs in power converters. In proceedings Australasian universities power engineering conference (AUPEC), 05–08 Dec 2010, Christchurch, New Zealand, pp 1–6
Google Scholar
Peftitsis D, Tolstoy G, Antonopoulos A, Rabkowski J, Jang-Kwon L, Bakowski M, Angquist L, Nee HP (2010) High-power modular multilevel converters with SiC JFETs. IEEE energy conversion congress and exposition, pp 2148–2155
Google Scholar
Cai C, Zhou W, Sheng K (2013) Characteristics and application of normally-Off SiC-JFETs in converters without antiparallel diodes. IEEE Trans Power Electron 28(10):4850–4860
CrossRef
Google Scholar
De Lillo L, Empringham L, Schulz M, Wheeler P (2011) A high power density SiC-JFET-based matrix converter. Proceedings of the 14th European conference on power electronics and applications (EPE), 30 Aug–01 Sept 2011, Birmingham, United Kingdom, pp 1–8
Google Scholar
Pittini R, Zhang Z, Andersen MAE (2013) Switching performance evaluation of commercial SiC power devices (SiC JFET and SiC MOSFET) in relation to the gate driver complexity. IEEE annual international energy conversion congress and exhibition (ECCE) Asia, 03–06 June 2013, Melbourne, Australia, pp 233–239
Google Scholar
ROHM (2017) SCT2120AF, N-channel SiC power MOSFET. Available http://www.rohm.com/web/global/products/-/product/SCT2120AF
Bellone S, Corte FGD, Albanese LF, Pezzimenti F (2011) An analytical model of the forward I-V characteristics of 4 H-SiC p-i-n diodes valid for a wide range of temperature and current. IEEE Trans Power Electron 26(10):2835–2843
CrossRef
Google Scholar
Gachovska T, Hudgins JL, Bryant A, Santi E, Mantooth HA, Agarwal AK (2012) Modeling, simulation, and validation of a power SiC BJT. IEEE Trans Power Electron 27(10):4338–4346
CrossRef
Google Scholar
Sun K, Wu H, Lu J, Xing Y, Huang L (2014) Improved modeling of medium Voltage SiC MOSFET within wide temperature range. IEEE Trans Power Electron 29(5):2229–2237
CrossRef
Google Scholar
Wood RA, Salem TE (2011) Evaluation of a 1200 V, 800 A all-SiC dual module. IEEE Trans Power Electron 26(9):2504–2511
CrossRef
Google Scholar
Ning P, Wang F, Ngo KD (2011) High-temperature SiC power module electrical evaluation procedure. IEEE Trans Power Electron 26(11):3079–3083
CrossRef
Google Scholar
Xu Han TJ, Jiang D, Tolbert LM, Wang F, Nagashima J, Kim SJ, Kulkarni S, Barlow F (2013) Development of a SiC JFET-based six-pack power module for a fully integrated inverter. IEEE Trans Power Electron 28(3):1464–1478
CrossRef
Google Scholar
Safari S, Castellazzi A, Wheeler PW (2013) Performance evaluation of bidirectional SiC switch devices within matrix converter. 15th European conference on power electronics and applications (PEA), 02–06 Sept 2013, Lille, France, pp 1–9
Google Scholar
Safari S, Castellazzi A, Wheeler P (2012) Evaluation of SiC power devices for a high power density matrix converter. In: IEEE energy conversion congress and exposition (ECCE), 15–20 Sept 2012, Raleigh, NC, USA pp 3934–3941
Google Scholar
Funaki T, Balda JC, Junghans J, Kashyap AS, Mantooth HA, Barlow F, Kimoto T, Hikihara T (2007) Power conversion with SiC devices at extremely high ambient temperatures. IEEE Trans Power Electron 22(4):1321–1329
CrossRef
Google Scholar
Duong TH, Berning DW, Hefner AR, Smedley KM (2007) Longterm stability test system for high-voltage, high-frequency SiC power devices. IEEE Appl Power Electron Conf 2007:1240–1246
Google Scholar
Agarwal A, Das M, Hull B, Krishnaswami S, Palmour J, Richmond J, Ryu SH, Zhang J (2006) Progress in silicon carbide power devices. In Proceedings 64th device research conference (DRC), 26–28 June 2006, Pennsylvania, USA, pp 155–158
Google Scholar
Ali S, Wolfs P (2016) An improved four step commutation process for silicon carbide based matrix converters. 2016 Australasian universities power engineering conference (AUPEC), 25–28 Sept 2016 Brisbane, Australia, pp 1–5
Google Scholar