Skip to main content

Advanced Electrical Machines for Oceanic Wave Energy Conversion

Part of the Renewable Energy Sources & Energy Storage book series (RESES)

Abstract

A number of renewable energy sources (RESs) are available but the electrical machineries were being used in some of the hydro-electrical power plants for a long time. Recently wind waves have been taken into consideration as one of the giant natural sources of energy. The oceanic wave sometimes called a wind wave has the high power density compared to the other popular RESs. Unfortunately, the conventional machineries are not suitable for the energy conversion from the sea wave. Therefore, advanced electrical machines are obvious for successful extraction of electrical power from the sea wave. As a result, a wide variety of new electrical machines have been proposed to convert the mechanical power from the oceanic wave into electrical power. Some of such electrical machines with their properties have been discussed in this chapter. In addition, a high power density linear generator has been presented in detail.

Keywords

  • Direct drive system
  • Linear generator
  • Oceanic wave
  • Permanent magnet machines
  • Wave energy conversion

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7287-1_4
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-7287-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28
Fig. 4.29
Fig. 4.30
Fig. 4.31
Fig. 4.32
Fig. 4.33
Fig. 4.34
Fig. 4.35
Fig. 4.36
Fig. 4.37
Fig. 4.38

References

  1. Vermaak R, Kamper MJ (2012) Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive WECs. IEEE Trans Ind Electron 59(5):2104–2115

    CrossRef  Google Scholar 

  2. Wu F, Zhang XP, Ju P, Sterling MJH (2008) Modeling and control of AWS based wave energy conversion system integrated into power grid. IEEE Trans power Systems 23(3):1196–1204

    CrossRef  Google Scholar 

  3. Cruz J (2008) Ocean wave energy: current status and future perspectives. Springer, Berlin, Heidelberg, Springer Series in Green Energy and Technology, ISBN 978-3-540-74894-6, ISSN 1865–3529

    Google Scholar 

  4. EPRI (2011) Mapping and assessment of the United States ocean wave energy resource. Palo Alto, CA

    Google Scholar 

  5. Chuankun W, Shi W (2008) The ocean resources and reserves evaluation in China. In: 1st National symposium on ocean energy, Hangzhou, China, pp 169–179

    Google Scholar 

  6. Seabased group [Online]. Available at: http://hornonline.com/seabased-group. Accessed on 24 July 2017

  7. Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy 31(1):271–283

    CrossRef  Google Scholar 

  8. Kofoed JP, Frigaard P, Friis-Madsen E, Sorensen HC (2006) Prototype testing of the wave energy converter wave dragon. Renew Energy 31(2):181–189

    CrossRef  Google Scholar 

  9. O’Sullivan DL, Lewis AW (2011) Generator selection and comparative performance in offshore oscillating water column ocean wave energy converters. IEEE Trans Energy Convers 26(2):603–614

    CrossRef  Google Scholar 

  10. Polinder H, Damen MEC, Gardner F (2004) Linear PM generator system for wave energy conversion in the AWS. IEEE Trans Energy Convers 19(3):583–589

    CrossRef  Google Scholar 

  11. Nasiri A, Zabalawi SA, Jeutter DC (2011) A linear permanent magnet generator for powering implanted electronic devices. IEEE Trans Power Electron 26(1):192–199

    CrossRef  Google Scholar 

  12. Farrok O, Ali MM (2014) A new technique to improve the linear generator designed for oceanic wave energy conversion. In: International conference on electrical and computer engineering, Bangladesh, pp 714–717

    Google Scholar 

  13. Zhao SW, Cheung NC, Gan W, Yang J (2010) High-precision position control of a linear-switched reluctance motor using a self-tuning regulator. IEEE Trans Power Electron 25(11):2820–2827

    CrossRef  Google Scholar 

  14. Prudell J, Stoddard M, Amon E, Brekken TKA, Jouanne A (2010) A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans Ind Appl 46(6):2392–2400

    CrossRef  Google Scholar 

  15. Farrok O, Islam MR, Sheikh MRI (2015) Fuzzy logic based an improved controller for wave energy conversion systems. In: International conference on electrical engineering and information communication technology, Bangladesh, pp 1–6

    Google Scholar 

  16. Ceballos S, Rea J, Lopez I, Pou J, Robles E, O’Sullivan DL (2013) Efficiency optimization in low inertia Wells turbine-oscillating water column devices. IEEE Trans Energy Convers 28(3):553–564

    CrossRef  Google Scholar 

  17. Oscillating water column [Online]. Available at: http://owc-wec.weebly.com/oscillating-water-columns.html. Accessed on 24 July 2017

  18. Sabzehgar R, Moallem M (2009) A review of ocean wave energy conversion systems. In: Electrical power and energy conference, pp 1–6

    Google Scholar 

  19. O’Sullivan DL, Lewis AW (2011) Generator selection and comparative performance in offshore oscillating water column ocean wave energy converters. IEEE Trans Energy Convers 26(2):603–614

    CrossRef  Google Scholar 

  20. Nasiri A, Zabalawi SA, Jeutter DC (2011) A linear permanent magnet generator for powering implanted electronic devices. IEEE Trans Power Electron 26(1):192–199

    CrossRef  Google Scholar 

  21. Pan JF, Zou Y, Cheung N, Cao G (2014) On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans Power Electron 29(10):5298–5307

    CrossRef  Google Scholar 

  22. Cheun C (2011) Supervisory interval type-2 TSK neural fuzzy network control for linear microstepping motor drives with uncertainty observer. IEEE Trans Power Electron 26(7):2049–2064

    CrossRef  Google Scholar 

  23. Farrok O, Islam MR, Sheikh MRI (2016) Analysis of the oceanic wave dynamics for generation of electrical energy using a linear generator. J Energy 3437027:14. https://doi.org/10.1155/2016/3437027

  24. Farrok O, Islam MR, Sheikh MRI, Guo YG, Zhu JG, Xu W (2015) Analysis and design of a novel linear generator for harvesting oceanic wave energy. In: IEEE international conference on applied superconductivity and electromagnetic devices, Shanghai, China, pp 272–273. https://doi.org/10.1109/ASEMD.2015.7453569

  25. Farrok O, Sheikh MRI, Islam MR (2015) An advanced controller to improve the power quality of microgrid connected converter. In: International conference on electrical and electronic engineering, Rajshahi, Bangladesh, pp 185–188. https://doi.org/10.1109/CEEE.2015.7428251

  26. Lockheed Backs World’s Largest Wave Energy Project. Available at https://www.forbes.com/sites/williampentland/2014/02/11/lockheed-backs-worlds-largest-wave-energy-project/#36120f5849d1. Accessed on 24 July 2017

  27. Brooking PRM, Mueller MA (2005) Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. Proc Inst Elect Eng Gener Transm Distrib 152(5):673–681

    CrossRef  Google Scholar 

  28. Wang J, Qu R, Liu Y, He J, Zhu Z, Fang H (2015) Comparison study of superconducting wind generators with HTS and LTS field windings. IEEE Trans Appl Supercond. 25(3) (art. 5201806)

    Google Scholar 

  29. Farrok O, Islam MR, Islam Sheikh MR, Guo Y, Zhu J, Xu W (2016) A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans Appl. Supercond 26(7) (art. 5207105)

    Google Scholar 

  30. Mueller MA, McDonald AS, Macpherson DE (2005) Structural analysis of low-speed axial-flux permanent-magnet machines. Elect Power Appl IEEE Proc 152(6):1417–1426

    CrossRef  Google Scholar 

  31. Vermaak R, Kamper MJ (2012) Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters. IEEE Trans Industr Electron 59:2104–2115

    CrossRef  Google Scholar 

  32. Nilsson K, Danielsson O, Leijon M (2006) Electromagnetic forces in the air gap of a permanent magnet linear generator at no load. J Appl Phys 99(3) (art. 034505)

    Google Scholar 

  33. Prudell Joseph et al (2010) A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans Ind Appl 46(6):2392–2400

    CrossRef  Google Scholar 

  34. Gargov NP, Zobaa AF (2012) Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. Renew Power Gener IET 6:171–176

    CrossRef  Google Scholar 

  35. Li Ye, Yi-Hsiang Yu (2012) A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew Sustain Energy Rev 16:4352–4364

    CrossRef  Google Scholar 

  36. Wolfbrandt A (2006) Automated design of a linear generator for wave energy converters—a simplified model. IEEE Trans Magn 42(7):1812–1819

    CrossRef  Google Scholar 

  37. Farrok O, Islam MR, Zhu J (2017) Stator tooth shape optimization of a permanent magnet linear generator for harvesting oceanic wave energy. Presented: 21st International conference on the computation of electromagnetic fields, Daejeon, Korea

    Google Scholar 

  38. Farrok O, Islam MR, Sheikh MRI, Xu W (2016) A new optimization methodology of the linear generator for wave energy conversion systems. In: IEEE international conference on industrial technology, Taipei, Taiwan, pp 1412–1417. https://doi.org/10.1109/ICIT.2016.7474965

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Farrok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Farrok, O., Islam, M.R. (2018). Advanced Electrical Machines for Oceanic Wave Energy Conversion. In: Islam, M., Roy, N., Rahman, S. (eds) Renewable Energy and the Environment. Renewable Energy Sources & Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-10-7287-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7287-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7286-4

  • Online ISBN: 978-981-10-7287-1

  • eBook Packages: EnergyEnergy (R0)