Skip to main content

Development of HTS Cable-Based Transmission Systems for Renewables

Part of the Renewable Energy Sources & Energy Storage book series (RESES)


High temperature superconducting (HTS) materials and technologies have become available to design and build HTS power cables, and the HTS cable characteristics have been well verified both in theory and in power transmission systems for practical applications. The HTS power cables, power networks and performances are described in detail to reveal the HTS cable technology and its trend. The necessary improvements required have been comprehensively identified to reach the goal of industrial and board application of HTS cables and transmission technologies which are potential critical elements for future power system renewables.


  • High temperature superconducting (HTS) cable
  • HTS AC cable
  • HTS DC cable
  • HTS power transmission
  • HTS smart grid
  • HTS power cable design
  • HTS cable characteristic analysis
  • HTS power cable application
  • HTS DC power transmission
  • HTS fault current limiter
  • HTS energy pipeline
  • HTS wires
  • HTS material characteristics
  • HTS cable development trend
  • Cold dielectric HTS cable
  • Hot dielectric HTS cable
  • Liquid nitrogen
  • HTS energy pipeline
  • Critical current density

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7287-1_3
  • Chapter length: 44 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-10-7287-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16
Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 3.20
Fig. 3.21
Fig. 3.22
Fig. 3.23
Fig. 3.24
Fig. 3.25
Fig. 3.26
Fig. 3.27
Fig. 3.28
Fig. 3.29


  1. Jin JX, Tang YJ, Xiao XY, Du BX, Wang QL, Wang JH, Wang SH, Bi YF, Zhu JG (2016) HTS power devices and systems: principles, characteristics, performance, and efficiency. IEEE Trans Appl Supercond 26(7):3800526

    Google Scholar 

  2. Jin JX, Xin Y, Wang QL, He YS, Cai CB, Wang YS, Wang ZM (2014) Enabling high-temperature superconducting technologies toward practical applications. IEEE Trans Appl Supercond 24(5):5400712

    CrossRef  Google Scholar 

  3. Jin JX, Chen XY, Qu R, Fang HY, Xin Y (2015) An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids. Physica C (Amsterdam, Neth) 510:48–53

    CrossRef  Google Scholar 

  4. Jin JX (2007) High efficient dc power transmission using high-temperature superconductors. Physica C 460–462:1443–1444

    CrossRef  Google Scholar 

  5. Huang Q, Jin JX, Zhang JB (2006) Simulation study on performance of a long-distance superconducting DC power transmission system. Electr Power 39(3):45–49

    MathSciNet  Google Scholar 

  6. Jin JX (2009) High temperature superconductors and their strong current applications. Metallurgical Industry Publishing House of China, Beijing

    Google Scholar 

  7. Xin Y, Hou B, Bi YF, Xi HX, Zhang Y, Ren AL, Yang XC, Han ZH, Wu ST, Ding HK (2005) Introduction of China’s first live grid installed HTS power cable system. IEEE Trans Appl Supercond 12(2):1814–1817

    CrossRef  Google Scholar 

  8. Xin Y, Ren AL, Hong H, Li HH (2013) Superconducting power cable. China Electric Power Press, Beijing

    Google Scholar 

  9. Zong XH, Wei D, Han YW, Tang T (2016) Development of 35 kV 2000 A CD HTS cable demonstration project. IEEE Trans Appl Supercond 26(7):5403404

    Google Scholar 

  10. Grilli F et al (2014) Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Trans Appl Supercond 24(1):8200433

    Google Scholar 

  11. Dai S, Xiao L, Zhang H, Teng Y, Liang X, Song N, Cao Z, Zhu Z, Gao Z, Ma T, Zhang D, Zhang F, Zhang Z, Xu X, Lin L (2014) Testing and demonstration of a 10-kA HTS DC power cable. IEEE Trans Appl Supercond 24(2):5400104

    Google Scholar 

Download references


The authors would like to deliver their appreciations to Z. H. Chen, X. Y. Chen, X. Y. Xiao, C. S. Li, Y. Q. Xing for their assistance to this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jian Xun Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jin, J.X., Islam, M.R., Khan, A.G. (2018). Development of HTS Cable-Based Transmission Systems for Renewables. In: Islam, M., Roy, N., Rahman, S. (eds) Renewable Energy and the Environment. Renewable Energy Sources & Energy Storage. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7286-4

  • Online ISBN: 978-981-10-7287-1

  • eBook Packages: EnergyEnergy (R0)