Skip to main content

Role of Solar Energy Applications for Environmental Sustainability

  • Chapter
  • First Online:
Environmental Biotechnology: For Sustainable Future

Abstract

Energy and environment are the opposite sides of the same coin. Increasing energy production depends on the fossil fuel availability and is the main cause of the environmental degradation by emission of greenhouse gases. To overcome the environmental degradation problem, the whole world is moving towards the renewable energy technologies. The sun is the main direct source of all forms of energy present on the earth. The solar energy can prove to be the sustainable future for maintaining energy demand. Solar energy is the utmost auspicious technology because it can be used for heating as well as electricity production. This technology is the most mature technology and can be used at large or small scale as cleanest source of energy. This chapter deals with the different solar energy technologies mainly working towards the environmental sustainability and cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad, H. K. S., Ghiasi, M., Mamouri, S. J., & Shafii, M. B. (2013). A novel integrated solar desalination system with a pulsating heat pipe. Desalination, 311, 206–210.

    Article  CAS  Google Scholar 

  • Abe, R. (2010). Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 179–209.

    Article  CAS  Google Scholar 

  • Al-Abidi, A. A., Mat, S. B., Sopian, K., Sulaiman, M. Y., Lim, C. H., & Th, A. (2012). Review of thermal energy storage for air conditioning systems. Renewable and Sustainable Energy Reviews, 16(8), 5802–5819.

    Article  CAS  Google Scholar 

  • Al-Badi, A. H., & Albadi, M. H. (2012). Domestic solar water heating system in Oman: Current status and future prospects. Renewable and Sustainable Energy Reviews, 16(8), 5727–5731.

    Article  Google Scholar 

  • Alexopoulos, S., & Hoffschmidt, B. (2010). Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus. Renewable Energy, 35(7), 1352–1356.

    Article  CAS  Google Scholar 

  • Al-Hayeka, I., & Badran, O. O. (2004). The effect of using different designs of solar stills on water distillation. Desalination, 169(2), 121–127.

    Article  CAS  Google Scholar 

  • Asbik, M., Ansari, O., Bah, A., Zari, N., Mimet, A., & El-Ghetany, H. (2016). Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM). Desalination, 381, 26–37.

    Article  CAS  Google Scholar 

  • Ayompe, L. M., Duffy, A., Mc Keever, M., Conlon, M., & McCormack, S. J. (2011). Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy, 36(5), 3370–3378.

    Article  Google Scholar 

  • Badran, A. A., Al-Hallaq, I. A., Salman, I. A. E., & Odat, M. Z. (2005). A solar still augmented with a flat-plate collector. Desalination, 172(3), 227–234.

    Article  CAS  Google Scholar 

  • Bahnemann, D. W., Lawton, L. A., & Robertson Peter, K. J. (2013). Chapter 16: The application of semiconductor photocatalysis for the removal of cyanotoxins from water and design concepts for solar photocatalytic reactors for large scale water treatment. In New and future developments in catalysis (pp. 395–415). Amsterdam/Boston: Elsevier.

    Chapter  Google Scholar 

  • Barrera, E. C. (1933). Double effect spherical solar still. Sun World, 17(1), 12–14.

    Google Scholar 

  • Behnam, P., & Shafii, M. B. (2016). Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes. Desalination, 397, 30–37.

    Article  CAS  Google Scholar 

  • Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simon, P. J., Lardin, C., Martinez, M. A., Vicente, J. A., Gonzalez, R., Llosac, C., Arques, A., & Amat, A. M. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161(1), 235–240.

    Article  CAS  Google Scholar 

  • Bloemer, J. W., Eibling, J. A., Irwin, J. R., & Lof, G. O. (1965). A practical basin-type solar still. Solar Energy, 9(4), 197–200.

    Article  Google Scholar 

  • Chan, H. Y., Riffat, S. B., & Zhu, J. (2010). Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews, 14(2), 781–789.

    Article  Google Scholar 

  • Chen, B. R., Chang, Y. W., Lee, W. S., & Chen, S. L. (2009). Long-term thermal performance of a two-phase thermosyphon solar water heater. Solar Energy, 83(7), 1048–1055.

    Article  CAS  Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027.

    Article  CAS  Google Scholar 

  • Coffey, J. P. (1975). Vertical solar distillation. Solar Energy, 17(6), 375–378.

    Article  Google Scholar 

  • DeWinter, F. (Ed.). (1990). Solar collectors, energy storage, and materials (Vol. 5). Cambridge, MA: MIT press.

    Google Scholar 

  • Drosou, V. N., Tsekouras, P. D., Oikonomou, T. I., Kosmopoulos, P. I., & Karytsas, C. S. (2014). The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods. Renewable and Sustainable Energy Reviews, 29, 463–472.

    Article  Google Scholar 

  • El-Agouz, S. A., El-Samadony, Y. A. F., & Kabeel, A. E. (2015). Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management, 101, 606–615.

    Article  Google Scholar 

  • El-Sebaii, A. A. (2005). Thermal performance of a triple-basin solar still. Desalination, 174(1), 23–37.

    Article  CAS  Google Scholar 

  • Eltawil, M. A., & Omara, Z. M. (2014). Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination, 349, 1–9.

    Article  CAS  Google Scholar 

  • Fujishima, A. K. I. R. A., Rao, T. N., & Tryk, D. A. (2000). TiO2 photocatalysts and diamond electrodes. Electrochimica Acta, 45(28), 4683–4690.

    Article  CAS  Google Scholar 

  • Garcia-Cortes, S., Bello-Garcia, A., & Ordonez, C. (2012). Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Applied Energy, 92, 815–821.

    Article  Google Scholar 

  • Gugulothu, R., Somanchi, N. S., Reddy, K. V. K., & Gantha, D. (2015). A review on solar water distillation using sensible and latent heat. Procedia Earth and Planetary Science, 11, 354–360.

    Article  Google Scholar 

  • Gunjo, D. G., Mahanta, P., & Robi, P. S. (2017). Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis. Renewable Energy, 114, 655–669.

    Article  Google Scholar 

  • Hamadou, O. A., & Abdellatif, K. (2014). Modeling an active solar still for sea water desalination process optimization. Desalination, 354, 1–8.

    Article  CAS  Google Scholar 

  • Hennecke, K., Schwarzbozl, P., Alexopoulos, S., Gottsche, J., Hoffschmidt, B., Beuter, M., Koll, G., & Hartz, T. (2008). Solar power tower Julich – The first test and demonstration plant for open volumetric receiver technology in Germany. In Proceedings of the 14th biennial CSP solar PACES symposium, Las Vegas, Nevada.

    Google Scholar 

  • Hossain, M. S., Saidur, R., Fayaz, H., Rahim, N. A., Islam, M. R., Ahamed, J. U., & Rahman, M. M. (2011). Review on solar water heater collector and thermal energy performance of circulating pipe. Renewable and Sustainable Energy Reviews, 15(8), 3801–3812.

    Article  Google Scholar 

  • Inamdar, J., & Singh, S. K. (2008). Techno- economic analysis of zero effluent discharge by use of solar detoxification at household level. International Journal of Natural and Engineering Sciences, 1, 208–211.

    Google Scholar 

  • Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637–638.

    Article  CAS  Google Scholar 

  • Islam, M. R., Sumathy, K., & Khan, S. U. (2013). Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews, 17, 1–25.

    Article  Google Scholar 

  • Jebasingh, V. K., & Herbert, G. J. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091.

    Article  Google Scholar 

  • Kabeel, A. E., Abdelgaied, M., & Mahgoub, M. (2016a). The performance of a modified solar still using hot air injection and PCM. Desalination, 379, 102–107.

    Article  CAS  Google Scholar 

  • Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016b). Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management, 113, 264–272.

    Article  CAS  Google Scholar 

  • Kabeel, A. E., Khalil, A., Shalaby, S. M., & Zayed, M. E. (2016c). Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. Journal of Solar Energy Engineering, 138(5), 051004.

    Article  Google Scholar 

  • Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3), 231–295.

    Article  CAS  Google Scholar 

  • Kiatsiriroat, T. (1989). Review of research and development on vertical solar stills. ASEAN Journal on Science and Technology for Development, 6(1), 15.

    Google Scholar 

  • Kositzi, M., Poulios, I., Malato, S., Caceres, J., & Campos, A. (2004). Solar photocatalytic treatment of synthetic municipal wastewater. Water Research, 38(5), 1147–1154.

    Article  CAS  Google Scholar 

  • Kudish, A. I., Evseev, E. G., Walter, G., & Priebe, T. (2003). Simulation study on a solar desalination system utilizing an evaporator/condenser chamber. Energy Conversion and Management, 44(10), 1653–1670.

    Article  CAS  Google Scholar 

  • Kumar, S., Dubey, A., & Tiwari, G. N. (2014). A solar still augmented with an evacuated tube collector in forced mode. Desalination, 347, 15–24.

    Article  CAS  Google Scholar 

  • Kumar, P. V., Kumar, A., Prakash, O., & Kaviti, A. K. (2015). Solar stills system design: A review. Renewable and Sustainable Energy Reviews, 51, 153–181.

    Article  Google Scholar 

  • Kumar, R. A., Esakkimuthu, G., & Murugavel, K. K. (2016). Performance enhancement of a single basin single slope solar still using agitation effect and external condenser. Desalination, 399, 198–202.

    Article  CAS  Google Scholar 

  • Lawrence, S. A., & Tiwari, G. N. (1990). Theoretical evaluation of solar distillation under natural circulation with heat exchanger. Energy Conversion and Management, 30(3), 205–213.

    Article  CAS  Google Scholar 

  • Lupfert, E., Geyer, M., Schiel, W., Esteban, A., Osuna, R., Zarza, E., & Nava, P. (2001). Eurotrough design issues and prototype testing at PSA. Solar Engineerings, 2001, 387–392.

    Google Scholar 

  • Maeda, K. (2011). Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 237–268.

    Article  CAS  Google Scholar 

  • Martinopoulos, G., Ikonomopoulos, A., & Tsilingiridis, G. (2016). Initial evaluation of a phase change solar collector for desalination applications. Desalination, 399, 165–170.

    Article  CAS  Google Scholar 

  • McLoughlin, O. A., Ibanez, P. F., Gernjak, W., Rodrıguez, S. M., & Gill, L. W. (2004). Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy, 77(5), 625–633.

    Article  CAS  Google Scholar 

  • Moorthy, M. (2010). Performance of solar air-conditioning system using heat pipe evacuated tube collector. Doctoral dissertation, UMP, National conference in mechanical engineering research and postgraduate studies. Pahang UMP Pekan.

    Google Scholar 

  • Morad, M. M., El-Maghawry, H. A., & Wasfy, K. I. (2015). Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination, 373, 1–9.

    Article  CAS  Google Scholar 

  • Mosleh, H. J., Mamouri, S. J., Shafii, M. B., & Sima, A. H. (2015). A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Conversion and Management, 99, 141–150.

    Article  Google Scholar 

  • Murtuza, S. A., Byregowda, H. V., & Imran, M. (2017). Experimental and simulation studies of parabolic trough collector design for obtaining solar energy. Resource-Efficient Technologies, 3(4), 414–421.

    Article  Google Scholar 

  • Mamouri, S. J., Derami, H. G., Ghiasi, M., Shafii, M. B., & Shiee, Z. (2014). Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy, 75, 501–507.

    Article  Google Scholar 

  • Nkwetta, D. N., Smyth, M., Zacharopoulos, A., & Hyde, T. (2013). Experimental field evaluation of novel concentrator augmented solar collectors for medium temperature applications. Applied Thermal Engineering, 51(1), 1282–1289.

    Article  Google Scholar 

  • Nosaka, Y., Nakamura, M., & Hirakawa, T. (2002). Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Physical Chemistry Chemical Physics, 4(6), 1088–1092.

    Article  CAS  Google Scholar 

  • Nosaka, A. Y., Kojima, E., Fujiwara, T., Yagi, H., Akutsu, H., & Nosaka, Y. (2003). Photoinduced changes of adsorbed water on a TiO2 photocatalytic film as studied by 1H NMR spectroscopy. The Journal of Physical Chemistry B, 107(44), 12042–12044.

    Article  CAS  Google Scholar 

  • Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097–5110.

    Article  Google Scholar 

  • Panchal, H. N., & Patel, S. (2017). An extensive review on different design and climatic parameters to increase distillate output of solar still. Renewable and Sustainable Energy Reviews, 69, 750–758.

    Article  Google Scholar 

  • Panchal, H. N., & Shah, P. K. (2014). Enhancement of distillate output of double basin solar still with vacuum tubes. Frontier Energy, 8(1), 101.

    Article  Google Scholar 

  • Panchal, H., Patel, P., Patel, N., & Thakkar, H. (2017). Performance analysis of solar still with different energy-absorbing materials. International Journal of Ambient Energy, 38(3), 224–228.

    Article  Google Scholar 

  • Parilti, N. B. (2010). Treatment of a petrochemical industry wastewater by a solar oxidation process using the Box-Wilson experimental design method. Ekoloji, 19(77), 9–15.

    Article  CAS  Google Scholar 

  • Patel, K., Patel, P., & Patel, J. (2012). Review of solar water heating systems. International Journal of Advanced Engineering Technology, 3(IV), 146–149.

    Google Scholar 

  • Peller, J. R., Whitman, R. L., Griffith, S., Harris, P., Peller, C., & Scalzitti, J. (2007). TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of Photochemistry and Photobiology, A: Chemistry, 186(2), 212–217.

    Article  CAS  Google Scholar 

  • Peral, J., Domenech, X., & Ollis, D. F. (1997). Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology & Biotechnology, 70(2), 117–140.

    Article  CAS  Google Scholar 

  • Quinones, D. H., Alvarez, P. M., Rey, A., Contreras, S., & Beltran, F. J. (2015). Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chemical Engineering Journal, 260, 399–410.

    Article  CAS  Google Scholar 

  • Rai, S. N., & Tiwari, G. N. (1983). Single basin solar still coupled with flat plate collector. Energy Conversion and Management, 23(3), 145–149.

    Article  Google Scholar 

  • Rajaseenivasan, T., Murugavel, K. K., Elango, T., & Hansen, R. S. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews, 17, 248–259.

    Article  Google Scholar 

  • Rajaseenivasan, T., Raja, P. N., & Srithar, K. (2014). An experimental investigation on a solar still with an integrated flat plate collector. Desalination, 347(2014), 131–137.

    Article  CAS  Google Scholar 

  • Rojas, D., Beermann, J., Klein, S. A., & Reindl, D. T. (2008). Thermal performance testing of flat-plate collectors. Solar Energy, 82(8), 746–757.

    Article  CAS  Google Scholar 

  • Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 51, 1038–1054.

    Article  Google Scholar 

  • Sarwar, J., & Mansoor, B. (2016). Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application. Energy Conversion and Management, 120, 247–256.

    Article  Google Scholar 

  • Sathyamurthy, R., El-Agouz, S. A., & Dharmaraj, V. (2015). Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination, 367, 180–185.

    Article  CAS  Google Scholar 

  • Shah, L. J., & Furbo, S. (2004). Vertical evacuated tubular-collectors utilizing solar radiation from all directions. Applied Energy, 78(4), 371–395.

    Article  CAS  Google Scholar 

  • Sivakumar, P., Christraj, W., Sridharan, M., & Jayamalathi, N. (2012). Performance improvement study of solar water heating system. ARPN Journal of Engineering and Applied Sciences, 7(1), 45–49.

    Article  Google Scholar 

  • Sodha, M. S., Kumar, A., Tiwari, G. N., & Pandey, G. C. (1980). Effects of dye on the performance of a solar still. Applied Energy, 7(1), 147–162.

    Article  CAS  Google Scholar 

  • Suneja, S., & Tiwari, G. N. (1998). Optimization of number of effects for higher yield from an inverted absorber solar still using the Runge-Kutta method. Desalination, 120(3), 197–209.

    Article  CAS  Google Scholar 

  • Tamini, A. (1987). Performance of a solar still with reflectors and black dye. Solar & Wind Technology, 4(4), 443–446.

    Article  Google Scholar 

  • Tanaka, H., Nosoko, T., & Nagata, T. (2000). Parametric investigation of a basin-type-multiple-effect coupled solar still. Desalination, 130(3), 295–304.

    Article  CAS  Google Scholar 

  • Tiwari, G. N., & Madhuri, G. N. (1987). Effect of water depth on daily yield of the still. Desalination, 61(1), 67–75.

    Article  CAS  Google Scholar 

  • Tiwari, G. N., & Tiwari, A. (2017). Handbook of solar energy. Singapor: Sprinter.

    Google Scholar 

  • Tiwari, G. N., Kupfermann, A., & Aggarwal, S. (1997). A new design for a double-condensing chamber solar still. Desalination, 114(2), 153–164.

    Article  CAS  Google Scholar 

  • Tleimat, B. W., & Howe, E. D. (1966). Nocturnal production of solar distillers. Solar Energy, 10(2), 61–66.

    Article  Google Scholar 

  • Tleimat, B. W., & Howe, E. D. (1969). Comparison of plastic and glass condensing covers for solar distillers. Solar Energy, 12(3), 293IN3297IN5303–296IN4302IN6304.

    Article  Google Scholar 

  • Tryk, D. A., Fujishima, A., & Honda, K. (2000). Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochimica Acta, 45(15), 2363–2376.

    Article  CAS  Google Scholar 

  • Tyagi, V. V., Pathak Atin, K., Singh, H. M., Kothari, R., Selvaraj, J., & Pandey, A. K. (2016). Renewable energy scenario in Indian context: Vision and achievements. 4th IET clean energy and technology conference (Vol. 8, p. 85). https://doi.org/10.1049/cp.2016.1342. ISBN: 978-1-78561-238-1.

  • Velmurugan, K., Christraj, W., Kulasekharan, N., & Elango, T. (2016). Performance study of a dual-function Thermosyphon solar heating system. Arabian Journal for Science and Engineering, 41(5), 1835–1846.

    Article  Google Scholar 

  • Wang, C., Liu, H., & Qu, Y. (2013). TiO2-based photocatalytic process for purification of polluted water: Bridging fundamentals to applications. Journal of Nanomater, 14. Article ID 319637.

    Google Scholar 

  • Wolfrum, E. J., Huang, J., Blake, D. M., Maness, P. C., Huang, Z., Fiest, J., & Jacoby, W. A. (2002). Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental Science & Technology, 36(15), 3412–3419.

    Article  CAS  Google Scholar 

  • Yadav, Y. P. (1991). Analytical performance of a solar still integrated with a flat plate solar collector: Thermosiphon mode. Energy Conversion and Management, 31(3), 255–263.

    Article  Google Scholar 

  • Zhao, X., Wang, Z., & Tang, Q. (2010). Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China. Applied Thermal Engineering, 30(16), 2526–2536.

    Article  CAS  Google Scholar 

  • Zhou, H., & Smith, D. W. (2002). Advanced technologies in water and wastewater treatment. Journal of Environmental Engineering and Science, 1(4), 247–264.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance in the form of Junior Research Fellowship (JRF) to Atin Kumar Pathak under Inspire Fellowship scheme by the Department of Science and Technology, Ministry of Science and Technology (Govt. of India), New Delhi, which is gratefully acknowledged. One of the author Mr. Har Mohan Singh is thankful to Ministry of New and Renewable Energy for National Renewable Energy Fellowship. Dr. V. V. Tyagi is also highly thankful to University Grant Commission (Govt. of India) for providing startup research grant at Shri Mata Vaishno Devi University, Katra (J&K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, A.K. et al. (2019). Role of Solar Energy Applications for Environmental Sustainability. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_14

Download citation

Publish with us

Policies and ethics