Skip to main content

Abstract

In past decades, many scientists and researchers have been involved in the field of interpreting scattering mechanisms presenting in PolSAR data. Polarimetric target decomposition has become one of the most powerful and the most popularly used techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Huynen, Phenomenological theory of radar targets, Ph.D. dissertation, Technical University of Delft, The Netherlands (1970)

    Google Scholar 

  2. J.R. Huynen, Phenomenological theory of radar target (Chapter 16), in Electromagnetic Scattering, P.L.E. Uslenghi, (Academic Press, New York, 1978), 653–712

    Chapter  Google Scholar 

  3. J.S. Lee, M.R. Grunes, T.L. Ainsworth, L. Du, D.L. Schuler, S.R. Cloude, Unsupervised classification using target decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 37, 2249–2258 (1999)

    Article  Google Scholar 

  4. J.S. Lee, M.R. Grunes, E. Pottier, L. Ferro-Famil, Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 42, 722–731 (2004)

    Article  Google Scholar 

  5. C.S. Tao, S.W. Chen, Y.Z. Li, S.P. Xiao, PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain. Remote Sens. 9, 660 (2017)

    Article  Google Scholar 

  6. J.J. van Zyl, Y. Kim, Synthetic Aperture Radar Polarimetry (Wiley, Hoboken, NJ, 2011)

    Google Scholar 

  7. T. Jagdhuber, I. Hajnsek, A. Bronstert, K.P. Papathanassiou, Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Trans. Geosci. Remote Sens. 51, 2201–2215 (2013)

    Article  Google Scholar 

  8. I. Hajnsek, T. Jagdhuber, H. Schcon, K.P. Papathanassiou, Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 47, 442–454 (2009)

    Article  Google Scholar 

  9. M. Neumann, L. Ferro-Famil, A. Reigber, Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data. IEEE Trans. Geosci. Remote Sens. 48, 1086–1104 (2010)

    Article  Google Scholar 

  10. O. Antropov, Y. Rauste, T. Hame, Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest. IEEE Trans. Geosci. Remote Sens. 49, 3838–3848 (2011)

    Article  Google Scholar 

  11. J.J. Sharma, I. Hajnsek, K.P. Papathanassiou, A. Moreira, Polarimetric decomposition over glacier ice using long-wavelength airborne PolSAR. IEEE Trans. Geosci. Remote Sens. 49, 519–535 (2011)

    Article  Google Scholar 

  12. Y. Yamaguchi, Disaster monitoring by fully polarimetric SAR data acquired with ALOS-PALSAR. Proc. IEEE 100, 2851–2860 (2012)

    Article  Google Scholar 

  13. M. Sato, S.W. Chen, M. Satake, Polarimetric SAR analysis of tsunami damage following the March 11, 2011 East Japan Earthquake. Proc. IEEE 100, 2861–2875 (2012)

    Article  Google Scholar 

  14. S.W. Chen, M. Sato, Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 51, 1985–1997 (2013)

    Article  Google Scholar 

  15. S.W. Chen, X.S. Wang, M. Sato, Urban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR data for the 3.11 East Japan earthquake. IEEE Trans. Geosci. Remote Sens. 54, 6919–6929 (2016)

    Article  Google Scholar 

  16. S.R. Cloude, E. Pottier, A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 34, 498–518 (1996)

    Article  Google Scholar 

  17. S.W. Chen, Y.Z. Li, X.S. Wang, S.P. Xiao, M. Sato, Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Process. Mag. 31, 79–89 (2014)

    Article  Google Scholar 

  18. S.R. Cloude, E. Pottier, An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 35, 68–78 (1997)

    Article  Google Scholar 

  19. R. Touzi, Target scattering decomposition in terms of roll-invariant target parameters. IEEE Trans. Geosci. Remote Sens. 45, 73–84 (2007)

    Article  Google Scholar 

  20. R. Paladini, L.F. Famil, E. Pottier, M. Martorella, F. Berizzi, E. Dalle Mese, Lossless and sufficient Ψ-invariant decomposition of random reciprocal target. IEEE Trans. Geosci. Remote Sens. 50, 3487–3501 (2012)

    Article  Google Scholar 

  21. A. Freeman, S.L. Durden, A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 36, 963–973 (1998)

    Article  Google Scholar 

  22. Y. Yamaguchi, T. Moriyama, M. Ishido, H. Yamada, Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 43, 1699–1706 (2005)

    Article  Google Scholar 

  23. Y. Yamaguchi, Y. Yajima, H. Yamada, A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci. Remote Sens. Lett. 3, 292–296 (2006)

    Article  Google Scholar 

  24. W.T. An, Y. Cui, J. Yang, Three-component model-based decomposition for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 48, 2732–2739 (2010)

    Article  Google Scholar 

  25. J.S. Lee, T.L. Ainsworth, The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions. IEEE Trans. Geosci. Remote Sens. 49, 53–64 (2011)

    Article  Google Scholar 

  26. Y. Yamaguchi, A. Sato, W.M. Boerner, R. Sato, H. Yamada, Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 49, 2251–2258 (2011)

    Article  Google Scholar 

  27. J.J. van Zyl, M. Arii, Y. Kim, Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens. 49, 3452–3459 (2011)

    Article  Google Scholar 

  28. S. Kusano, K. Takahashi, M. Sato, Volume scattering power constraint based on the principal minors of the coherency matrix. IEEE Geosci. Remote Sens. Lett. 11, 361–365 (2014)

    Article  Google Scholar 

  29. M. Arii, J.J. van Zyl, Y. Kim, A general characterization for polarimetric scattering from vegetation canopies. IEEE Trans. Geosci. Remote Sens. 48, 3349–3357 (2010)

    Article  Google Scholar 

  30. J.S. Lee, T.L. Ainsworth, Y. Wang, Generalized polarimetric model-based decompositions using incoherent scattering models. IEEE Trans. Geosci. Remote Sens. 52, 2474–2491 (2014)

    Article  Google Scholar 

  31. S.W. Chen, X.S. Wang, S.P. Xiao, M. Sato, General polarimetric model-based decomposition for coherency matrix. IEEE Trans. Geosci. Remote Sens. 52, 1843–1855 (2014)

    Article  Google Scholar 

  32. Y. Cui, Y. Yamaguchi, J. Yang, H. Kobayashi, S.E. Park, G. Singh, On complete model-based decomposition of polarimetric SAR coherency matrix data. IEEE Trans. Geosci. Remote Sens. 52, 1991–2001 (2014)

    Article  Google Scholar 

  33. G. Singh, Y. Yamaguchi, S.E. Park, General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 51, 3014–3022 (2013)

    Article  Google Scholar 

  34. J.D. Ballester-Berman, J.M. Lopez-Sanchez, Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 48, 466–479 (2010)

    Article  Google Scholar 

  35. S.W. Chen, X.S. Wang, Y.Z. Li, M. Sato, Adaptive model-based polarimetric decomposition using PolInSAR coherence. IEEE Trans. Geosci. Remote Sens. 52, 1705–1718 (2014)

    Article  Google Scholar 

  36. S.W. Chen, M. Ohki, M. Shimada, M. Sato, Deorientation effect investigation for model-based decomposition over oriented built-up areas. IEEE Geosci. Remote Sens. Lett. 10, 273–277 (2013)

    Article  Google Scholar 

  37. A. Freeman, Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens. 45, 2583–2592 (2007)

    Article  Google Scholar 

  38. M. Arii, J.J. van Zyl, Y. Kim, Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens. 49, 1104–1113 (2011)

    Article  Google Scholar 

  39. H. Kimura, Radar polarization orientation shifts in built-up areas. IEEE Geosci. Remote Sens. Lett. 5, 217–221 (2008)

    Article  Google Scholar 

  40. K. Iribe, M. Sato, Analysis of polarization orientation angle shifts by artificial structures. IEEE Trans. Geosci. Remote Sens. 45, 3417–3425 (2007)

    Article  Google Scholar 

  41. T. Tadono, M. Shimada, H. Murakami, J. Takaku, Calibration of PRISM and AVNIR-2 onboard ALOS “Daichi”. IEEE Trans. Geosci. Remote Sens. 47, 4042–4050 (2009)

    Article  Google Scholar 

  42. D.L. Schuler, J.S. Lee, T.L. Ainsworth, Compensation of terrain azimuthal slope effects in geophysical parameter studies using polarimetric SAR data. Remote Sens. Environ. 69, 139–155 (1999)

    Article  Google Scholar 

  43. J.S. Lee, D.L. Schuler, T.L. Ainsworth, Polarimetric SAR data compensation for terrain azimuth slope variation. IEEE Trans. Geosci. Remote Sens. 38, 2153–2163 (2000)

    Article  Google Scholar 

  44. J.S. Lee, D.L. Schuler, T.L. Ainsworth, E. Krogager, D. Kasilingam, W.M. Boerner, On the estimation of radar polarization orientation shifts induced by terrain slopes. IEEE Trans. Geosci. Remote Sens. 40, 30–41 (2002)

    Article  Google Scholar 

  45. F. Xu, Y.Q. Jin, Deorientation theory of polarimetric scattering targets and application to terrain surface classification. IEEE Trans. Geosci. Remote Sens. 43, 2351–2364 (2005)

    Article  Google Scholar 

  46. S.R. Cloude, Polarisation Application in Remote Sensing (Oxford University Press, Oxford, 2009)

    Book  Google Scholar 

  47. I. Hajnsek, E. Pottier, S.R. Cloude, Inversion of surface parameters from polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 41, 727–744 (2003)

    Article  Google Scholar 

  48. S.R. Cloude, K.P. Papathanassiou, Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 36, 1551–1565 (1998)

    Article  Google Scholar 

  49. K.P. Papathanassiou, S.R. Cloude, Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39, 2352–2363 (2001)

    Article  Google Scholar 

  50. E. Colin, C. Titin-Schnaider, W. Tabbara, An interferometric coherence optimization method in radar polarimetry for high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 44, 167–175 (2006)

    Article  Google Scholar 

  51. M. Neumann, L. Ferro-Famil, A. Reigber, Multibaseline polarimetric SAR interferometry coherence optimization. IEEE Geosci. Remote Sens.Lett. 5, 93–97 (2008)

    Article  Google Scholar 

  52. F. Garestier, P.C. Dubois-Fernandez, I. Champion, Forest height inversion using high-resolution P-band Pol-InSAR data. IEEE Trans. Geosci. Remote Sens. 46, 3544–3559 (2008)

    Article  Google Scholar 

  53. F. Garestier, P.C. Dubois-Fernandez, K.P. Papathanassiou, Pine forest height inversion using single-pass X-band PolInSAR data. IEEE Trans. Geosci. Remote Sens. 46, 59–68 (2008)

    Article  Google Scholar 

  54. S.R. Cloude, Polarization coherence tomography. Radio Sci. 41, 1–27 (2006)

    Article  Google Scholar 

  55. S.R. Cloude, Dual-baseline coherence tomography. IEEE Geosci. Remote Sens. Lett. 4, 127–131 (2007)

    Article  Google Scholar 

  56. L. Ferro-Famil, M. Neumann, C. Lopez-Martinez, Analysis of natural scenes using polarimetric and interferometric SAR data statistics in particular configurations, in IEEE International Geoscience and Remote Sensing Symposium, IV-33–IV-36 (2008)

    Google Scholar 

  57. L. Ferro-Famil, E. Pottier, J. S. Lee, Unsupervised classification and analysis of natural scenes from polarimetric interferometric SAR data, in IEEE International Geoscience and Remote Sensing Symposium, 2715–2717 (2001)

    Google Scholar 

  58. J.S. Lee, K.P. Papathanassiou, I. Hajnsek, T. Mette, M. R. Grunes, T. Ainsworth, et al., Applying polarimetric SAR interferometric data for forest classification, in IEEE International Geoscience and Remote Sensing Symposium, 4848–4851 (2005)

    Google Scholar 

  59. A. Ferretti, C. Prati, F. Rocca, Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39, 8–20 (2001)

    Article  Google Scholar 

  60. J.S. Lee, S.R. Cloude, K.P. Papathanassiou, M.R. Grunes, I.H. Woodhouse, Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications. IEEE Trans. Geosci. Remote Sens. 41, 2254–2263 (2003)

    Article  Google Scholar 

  61. M. Shimada, O. Isoguchi, T. Tadono, K. Isono, PALSAR radiometric and geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932 (2009)

    Article  Google Scholar 

  62. S.W. Chen, X.S. Wang, M. Sato, PolInSAR complex coherence estimation based on covariance matrix similarity test. IEEE Trans. Geosci. Remote Sens. 50, 4699–4710 (2012)

    Article  Google Scholar 

  63. A.R.V. Hippel, Dielectrics and Waves (Wiley, New York, 1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Wei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, SW., Wang, XS., Xiao, SP., Sato, M. (2018). Advanced Polarimetric Target Decomposition. In: Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar . Springer, Singapore. https://doi.org/10.1007/978-981-10-7269-7_2

Download citation

Publish with us

Policies and ethics