Drop Breakup and Size Evolution in Oil and Gas Production: A Review of Models and Mechanisms

  • João N. E. CarneiroEmail author
  • Amit Patil
  • Stein T. Johansen
  • Gabriel F. N. Gonçalves
  • Mariana Gallassi
Part of the Energy, Environment, and Sustainability book series (ENENSU)


The prediction of drop sizes in dispersions is important in a number of industrial applications. Although many advances have been achieved in the understanding of the factors influencing drop size distributions obtained in high shear systems, as well as size evolution throughout pipe flow and equipment, there are still many open questions that remain to be addressed. Here, the governing breakage mechanisms under different conditions will be reviewed, including various fluid systems and experimental apparatuses. Furthermore, different models that have been proposed in the literature will be outlined, including mechanistic models and drop size evolution approaches. Finally, a practical approach to study dynamic emulsion stability characterization will be presented.



Amit Patil and Stein Tore Johansen thank SINTEF Materials & Chemistry, through the project SIP SURFLUX, for funding the development of the stirred tank emulsion characterization method.


  1. Adamson W (1997) Physical chemistry of surfaces. Wiley, New YorkGoogle Scholar
  2. Alopeus V, Moilanen P, Laakkonen M (2009) Analysis of stirred tanks with two-zone models. AIChe J 55(10):2545–2552CrossRefGoogle Scholar
  3. Angeli P, Hewitt GF (2000) Drop size distributions in horizontal oil-water dispersed flows. Chem Eng Sci 55(16):3133–3143CrossRefGoogle Scholar
  4. Bałdyga J, Bourne JR (1995) Interpretation of turbulent mixing using fractals and multifractals. Chem Eng Sci 50(3):381–400Google Scholar
  5. Bałdyga J, Podgórska W (1998) Drop breakup in intermittent turbulence: maximum stable drop size and transient sizes of droplets. Can J Chem Eng 76:456–470Google Scholar
  6. Bałdyga J, Bourne JR, Pacek AW, Amanullah A, Nienow AW (2001) Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency. Chem Eng Sci 56:3377–3385CrossRefGoogle Scholar
  7. Behzadi A, Issa RI, Rusche H (2000) Modelling dispersed bubbly and droplet flow at high dispersed phase fractions. Chem Eng Sci 59:759–770Google Scholar
  8. Birdi KS (ed) (2008) Handbook of surface and colloid chemistry. CRC PressGoogle Scholar
  9. Boxall JA, Koh CA, Dendy Sloan E, Sum AK, Wu DT (2012) Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir 28:104–110CrossRefGoogle Scholar
  10. Brown DE, Pitt K (1974) Effect of impeller geometry on drop break-up in a stirred liquid-liquid contactor. Chem Eng Sci 29(2):345–348CrossRefGoogle Scholar
  11. Buffo A, De Bona J, Vanni M, Marchisio DL (2016) Simplified volume averaged models for liquid-liquid dispersions: correct derivation and comparison with other approaches. Chem Eng Sci 153:382–393CrossRefGoogle Scholar
  12. Calabrese RV, Chang TPK, Dang PT (1986a) Drop breakup in turbulent stirred contactors: Part I: Effect of dispersed phase viscosity. AIChe J 32(4):657–666Google Scholar
  13. Calabrese RV, Wang CY, Bryner NP (1986b) Drop breakup in turbulent stirred contactors: Part III: Correlations for mean size and drop size distribution. AIChe J 32(4):677–681Google Scholar
  14. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover books on physics series. Dover PublicationsGoogle Scholar
  15. Chen HT, Middleman S (1967) Drop size distribution in agitated liquid-liquid systems. AIChe J 13(5):989–995CrossRefGoogle Scholar
  16. Clift R, Grace JR, Weber ME (1988) Bubbles, drops and particles. Academic Press, LondonGoogle Scholar
  17. Coulaloglou CA, Tavlarides LL (1976a) Drop size distributions and coalescence frequencies of liquid-liquid dispersions in flow vessels. AIChe J 22(2):289–297CrossRefGoogle Scholar
  18. Coulaloglou CA, Tavlarides LL (1976b) Descriptioin of interaction processes in agitated liquid-liquid dispersions. AIChe J 32(11):1289–1297CrossRefGoogle Scholar
  19. Croce D (2014) Study of water/oil flow and emulsion formation in electrical submersible pumps. Thesis, The University of Tulsa. Tulsa, USA, MScGoogle Scholar
  20. Davies JT (1985) Drop sizes of emulsions related to turbulent energy dissipation rates. Chem Eng Sci 40(5):839–842CrossRefGoogle Scholar
  21. Denisova MO, Kostarev KG (2013) Initiation of motion in a fluid with a free surface of small area. Proc IUTAM 8:75–84CrossRefGoogle Scholar
  22. Diemer RB, Olson JH (2002) A moment methodology for coagulation and breakage problems: part 3 generalized daughter distribution functions. Chem Eng Sci 57:4187–4198CrossRefGoogle Scholar
  23. Doulah MS (1975) An effect of hold-up on drop sizes in liquid-liquid dispersions. Ind Eng Chem Fundam 14(2):137–138CrossRefGoogle Scholar
  24. Frumkin A (1923) Zur Theorie der Elektrokapillarität I and II. Z Phys Chem 103(43):55Google Scholar
  25. Galinat S, Mabernat O, Guiraud P, Dalmazzone C, Risso F (2005) Drop breakup in turbulent pipe flow downstream of a restriction. Chem Eng Sci 60:6511–6528CrossRefGoogle Scholar
  26. Galinat S, Garrido Torres L, Mabernat O, Guiraud P, Risso F, Dalmazzone C, Noik C (2007) Breakup of a drop in a liquid-liquid pipe flow through an orifice. AIChe J 53(1):56–68CrossRefGoogle Scholar
  27. Groeneweg F, van Dieren F, Agterof WGM (1994) Droplet break-up in a stirred water-in-oil emulsion in the presence of emulsifiers. Colloids Surf A 91:207–214CrossRefGoogle Scholar
  28. Hall S, Pacek AW, Kowalski AJ, Cooke M, Rothman D (2013a) The effect of scale and interfacial tension on liquid-liquid dispersion in in-line Silverson rotor-stator mixers. Chem Eng Res Des 91:2156–2168CrossRefGoogle Scholar
  29. Hall S, Cooke M, El-Hamouz A, Kowalski AJ (2013b) Droplet break-up by in-line Silverson rotor-stator mixer. Chem Eng Sci 66:2068–2079CrossRefGoogle Scholar
  30. Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295CrossRefGoogle Scholar
  31. Hu B, Angeli P, Matar OK, Hewitt GF (2005) Prediction of phase inversion in agitated vessels using a two-region model. Chem Eng Sci 60:3487–3495CrossRefGoogle Scholar
  32. Janssen JJM, Boon A, Agterof WGM (1994) Influence of dynamic interfacial properties on droplet break-up in simple shear flow. AIChe J 40(12):1929–1939CrossRefGoogle Scholar
  33. Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dok Akad Nauk 30:301–305MathSciNetGoogle Scholar
  34. Kolmogorov A (1949) On the disintegration of drops in a turbulent flow. Dok Akad Nauk 66:825–828Google Scholar
  35. Konno M, Aoki M, Saio S (1983) Scale effect on breakup process in liquid-liquid agitated tanks. J Chem Eng Jpn 16(4):312–319CrossRefGoogle Scholar
  36. Koshy A, Das TR, Kumar R (1988) Effect of surfactants on drop breakage in turbulent liquid dispersions. Chem Eng Sci 43:131–135CrossRefGoogle Scholar
  37. Lagisetty JS, Das PK, Kumar R, Gandhi KS (1986) Breakage of viscous and non-newtonian drops in stirred dispersions. Chem Eng Sci 41(1):65–72CrossRefGoogle Scholar
  38. Lam A, Sathyagal AN, Kumar S, Ramkrishna D (1996) Maximum stable drop diameter in stirred dispersions. AIChe J 42(6):1547–1552CrossRefGoogle Scholar
  39. Lutz M, Denk V, Wichterle K, Sobolik V (1998) Electrodiffusional flow diagnostics in a centrifugal pump. J Appl Electrochem 28:337–342CrossRefGoogle Scholar
  40. Maaß S, Kraume M (2012) Determination of breakage rates using single drop experiments. Chem Eng Sci 70:146–164CrossRefGoogle Scholar
  41. Maindarkar SN, Bongers P, Henson MA (2013) Predicting the effects of surfactant coverage on drop size distributions of homogenized emulsions. Chem Eng Sci 89:102–114CrossRefGoogle Scholar
  42. Maniero R, Mabernat O, Climent E, Risso F (2012) Modeling and simulation of inertial drop breakup in a turbulent pipe flow downstream of a restriction. Int J Multiph Flow 42:1–8CrossRefGoogle Scholar
  43. McCabe WL, Smith J, Harriott P (2005) Unit operations of chemical engineering: Chemical engineering series. McGraw-HillGoogle Scholar
  44. Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484CrossRefGoogle Scholar
  45. Morales R, Pereyra E, Wang S, Shoham O (2012) Droplet formation through centrifugal pumps for oil-in-water dispersions. SPE J 18(1):172–178CrossRefGoogle Scholar
  46. Nambiar DKR, Kumar R, Gandhi KS (1990) Breakage and coalescence of drops in turbulent stirred dispersions. Sadhana 15(2):73–103CrossRefGoogle Scholar
  47. Nienow AW (2004) Break-up, coalescence and catastrophic phase inversion in turbulent contactors. Adv Colloid Interface Sci 108–109:95–103CrossRefGoogle Scholar
  48. Pacek AW, Man CC, Nienow AW (1998) On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci 53(11):2005–2011CrossRefGoogle Scholar
  49. Padron G (2001) Measurement and comparison of power draw in batch rotor-stator mixers. Thesis, University of Maryland, MScGoogle Scholar
  50. Pan K-L, Law CK, Zhou B (2008) Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J Appl Phys 103Google Scholar
  51. Patil AV, Marti XS, Tetlie P, Johansen ST (2017a) Development of an advanced imaging technique for dynamic emulsion stability. Chem Eng J 322:90–101CrossRefGoogle Scholar
  52. Patil A, Arnesen K, Holte A, Strseth T, Farooq U, Brunsvik A, Skjetne T, Johansen ST (2017b) Development of an advanced characterization technique for dynamic emulsion stability. In: Proceedings of oil field chemistry symposium-TEKNAGoogle Scholar
  53. Percy JS, Sleicher CA (1983) Drop breakup in the flow of immiscible liquids through an orifice in a pipe. AIChe J 29(1):161–164CrossRefGoogle Scholar
  54. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  55. Raikar N, Bhatia S, Malone MA, Henson M (2009) Experimental studies and population balance equation models for breakage prediction of emulsion drop size distribution. Chem Eng Sci 64(10):2433–2447CrossRefGoogle Scholar
  56. Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10(2):259–275CrossRefGoogle Scholar
  57. Solsvik J, Jakobsen HA (2016a) Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence. Ind Eng Chem Res 55:1449–1460CrossRefGoogle Scholar
  58. Solsvik J, Jakobsen HA (2016b) Single drop breakup experiments in stirred liquid-liquid tank. Chem Eng Sci 131:219–234CrossRefGoogle Scholar
  59. Solsvik J, Skjervold VT, Han L, Luo H, Jakobsen HA (2016a) A theoretical study on drop breakup modeling in turbulent flows: the inertial subrange versus the entire spectrum of isotropic turbulence. Chem Eng Sci 149(31):249–265CrossRefGoogle Scholar
  60. Solsvik J, Maaß S, Jakobsen HA (2016b) Definition of the single drop breakup event. Ind Eng Chem ResCrossRefGoogle Scholar
  61. Sprow FB (1967) Distribution of drop sizes produced in turbulent liquid-liquid dispersion. Chem Eng Sci 22(3):435–442CrossRefGoogle Scholar
  62. Steiner H, Teppner R, Brenn G, Vankova N, Tcholakova S, Denkov (2006) Emulsification in turbulent flow: 1. Mean and maximum drop diameter in inertial and viscous regime. Chem Eng Sci 61:5841–5855Google Scholar
  63. Tabor D (1991) Gases, liquids and solids: and other states of matter, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Taylor GI (1932) The viscosity of fluid containing small drops of another fluid. Proc R Soc Lond Ser A 138:41–48CrossRefGoogle Scholar
  65. Tcholakova S, Vankova N, Denkov ND, Danner T (2007) Emulsification in turbulent flow: 3. Daughter drop-size distribution. J Colloid Interface Sci 310:570–589CrossRefGoogle Scholar
  66. Tcholakova S, Lesov I, Golemanov K, Denkov ND, Judat S, Engel R, Danner T (2011) Efficient emulsification of viscous oils at high drop volume fraction. Langmuir 27:14783–14796CrossRefGoogle Scholar
  67. Utomo AT, Baker M, Pacek AW (2008) The effect of stator geometry on the flow pattern and energy dissipation rate in a rotor-stator mixer. Chem Eng Res Des 87:533–542CrossRefGoogle Scholar
  68. Utomo AT, Baker M, Pacek AW (2009) Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer. Chem Eng Res Des 86:1397–1409CrossRefGoogle Scholar
  69. van der Zande MJ (1999) Droplet breakup in turbulent oil-in-water flow through a restriction. PhD thesis, TU Delft. Delft, The NeatherlandsGoogle Scholar
  70. van der Zande MJ, Muntinga JH, van den Broek WMGT (1998) Emulsification of production fluids in the choke valve. In: SPE annual technical conference and exhibition, New Orleans, Louisiana, 27–30 September 1998. SPE 49173Google Scholar
  71. Vankova N, Tcholakova S, Denkov ND, Ivanov ID, Vulchev VD, Danner T (2007a) Emulsification in turbulent flow: 1. Mean and maximum drop diameter in inertial and viscous regime. J Colloid Interface Sci 312:363–380CrossRefGoogle Scholar
  72. Vankova N, Tcholakova S, Denkov ND, Vulchev VD, Danner T (2007b) Emulsification in turbulent flow: 2. Breakage rate constants. J Colloid Interface Sci 313:612–629CrossRefGoogle Scholar
  73. Wardle KE, Weller HG (2013) Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction. Int J Chem Eng 2013:1–13CrossRefGoogle Scholar
  74. Wichterle K (1995) Drop breakup by impellers. Chem Eng Sci 50(22):3581–3586CrossRefGoogle Scholar
  75. Wichterle K (1996) Shear rate on centrifugal pump impeller. Chem Eng Sci 51(23):5227–5228CrossRefGoogle Scholar
  76. Zerpa LE, Dendy Sloan E, Sum AK, Koh CA (2012) Overview of CSMHyK: a transient hydrate formation model. J Petrol Sci Eng 98–99:122–129CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • João N. E. Carneiro
    • 1
    Email author
  • Amit Patil
    • 2
  • Stein T. Johansen
    • 2
  • Gabriel F. N. Gonçalves
    • 1
  • Mariana Gallassi
    • 1
  1. 1.Instituto SINTEF do BrasilRio de JaneiroBrazil
  2. 2.SINTEF MKTrondheimNorway

Personalised recommendations