Advertisement

Sprays Used for Thermal Barrier Coatings

  • P. Fauchais
  • M. Vardelle
  • A. Vardelle
  • S. Goutier
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

“Nano-sized” or “nano-structured” materials correspond to particle diameters or an internal structure with at least one dimension smaller than 100 nm. The thermal spray community has been actively involved in this area for more than 30 years. Due to the large volume fraction of the internal interfaces, nano-structured coatings exhibit better properties, especially toughness, thanks to crack arresting effect. However, nano-sized particles can be injected in plasma jets only with a liquid carrier as either suspensions (Suspension Plasma Spray, SPS) of nanometer-sized particles or solutions (Solution Plasma Spray Process, SPPS) of reacting elements forming particles. However, a few problems must be solved:
  • How droplets and sub-micrometer particles behave in spray jets and what are the measuring tools available?

  • Is it possible to follow the formation of splats with particles below a few micrometers?

  • How optimizing the liquid injection and its matching with the spray torch?

  • What is the interest to spray coatings with mixtures of micrometer and nanometer-sized particles?

Among the different coatings studied many works have been related to thermal barrier coatings (TBCs) to compete, at lower price, with Electron Beam-Physical Vapor Deposition (EB-PVD) or Plasma Spray-Physical Vapor Deposition (PS-PVD) and also to achieve TBCs with a better resistance to Ca50Mg10Al10Si30 (CMAS).

Abbreviations

APG

Advanced Plasma Gun

APS

Atmospheric Plasma Spraying

CMAS

Ca50Mg10Al10Si30

DC

Direct Current

DCLC

Double Ceramic Layer Coatings

EB-PVD

Electron Beam-Physical Vapor Deposition

GLR

Gas-to-Liquid Mass Ratio

GZO

Gadolinium Zirconate

HVOF

High Velocity Oxy-Fuel

IPBs

Inter-Pass Boundaries

LAMT

La(Al1/4Mg1/2Ta1/4)O3

LSCF

La1−xSrxCo1−yFeyO3−δ

LZ

Lanthanum Zirconate (La2Zr2O7)

OFGC

Optimized Functionally Graded Coating

PIV

Particle Image Velocimetry

PS-PVD

Plasma Sprayed-Physical Vapor Deposition

SCLC

Single Ceramic Layer Coatings

SPS

Suspension Plasma Spraying

SPPS

Solution Precursor Plasma Spraying

St

Stokes Number

TBCs

Thermal Barrier Coatings

TEC

Thermal Expansion Coefficient

TGO

Thermally Grown Oxide

USAXS

Ultra-Small-Angle X-rays Scattering

We

Weber Number

YAG

Y3Al5O12

YSZ

Yttria Stabilized Zirconia

Z

Ohnesorge Number

References

  1. Aziz B, Gougeon P, Moreau C (2017) Temperature measurement challenges and limitations for in-flight particles in suspension plasma spraying. J Therm Spray Technol 26:695–707CrossRefGoogle Scholar
  2. Bacciochini A, Ilavsky J, Montavon G, Denoirjean A, Ben-Ettouil F, Valette S, Fauchais P, Wittmann-Teneze K (2010) Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater Sci Eng A 528:91–102CrossRefGoogle Scholar
  3. Bakan E, Mack DE, Mauer G, Vassen R (2014) Gadolinium zirconate/ysz thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc 97(12):4045–4051CrossRefGoogle Scholar
  4. Basu S, Jordan EH, Cetegen BM (2006) Fluid mechanics and heat transfer of liquid precursor droplets injected into high temperature plasmas. J Therm Spray Technol 15(4):576–581CrossRefGoogle Scholar
  5. Ben-Ettouil F, Denoirjean A, Grimaud A, Montavon G, Fauchais P (2009) Sub-micrometer-sized y-psz thermal barrier coatings manufactured by suspension plasma spraying: process, structure and some functional properties. In: Marple BR et al (eds) Thermal spray 2009. ASM International, Materials Park, Ohio, USA, pp 193–199Google Scholar
  6. Bertolissi G, Chazelas C, Bolelli G, Lusvarghi L, Vardelle M, Vardelle A (2012) Engineering the microstructure of solution precursor plasma-sprayed coatings. J Therm Spray Technol 21(6):1148–1162CrossRefGoogle Scholar
  7. Blazdell P, Kuroda S (2000) Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer. Surf Coat Technol 123(2–3):239–246CrossRefGoogle Scholar
  8. Burgess A (2002) Hastelloy C-276 parameter study using the axial III plasma spray system. In: Lugsheider E (ed) Proceedings ITSC, Essen, Germany (Pub). ASM International, Materials Park, OH, USA pp 516–518Google Scholar
  9. Chen X, Pfender E (1983) Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma Process 3(1):97–113CrossRefGoogle Scholar
  10. Chen D, Jordan EH, Gell M (2008) Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Tech 202:2132–2138CrossRefGoogle Scholar
  11. Cotler EM, Chen D, Molz RJ (2011) Pressure-based liquid feed system for suspension plasma spray coatings. J Therm Spray Technol 20(4):967–973CrossRefGoogle Scholar
  12. Craig M, Ndamka NL, Wellman RG, Nicholls JR (2015) CMAS degradation of EB-PVD TBCs: the effect of basicity. Surf Coat Technol 270:45–153CrossRefGoogle Scholar
  13. Delbos C (2004) Understanding contribution to the liquid injection of ceramics (Y.S.Z., Perovskyte, …) or metals (Ni, …) in a direct current plasma jet in order to work out finely structured coatings for S.O.F.Cs. (in French). PhD thesis. Univ of Limoges, France 30 Nov 2004. Published on line 22 July 2005Google Scholar
  14. Delbos C, Fazilleau J, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying, part 2: zirconia particle treatment and coating formation. Plasma Chem Plasma Process 26(4):393–414CrossRefGoogle Scholar
  15. Duarte W, Rossignol S, Vardelle M (2014) La2Zr2O7 (LZ) coatings by liquid feedstock plasma spraying: the role of precursors. J Thermal Spray Technol 23(8):1425–1435CrossRefGoogle Scholar
  16. Etchart-Salas R (2007) Suspension plasma spraying: analytical and experimental approach of the phenomena imply in the reproducibility and the quality of the deposits. PhD’s thesis. University of Limoges 17 Oct 2007. On line published Feb 2009Google Scholar
  17. Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16(5–6):857–865CrossRefGoogle Scholar
  18. Fauchais P (2004) Understanding plasma spraying (Topical review). J Phys D: Appl Phys 37:R86–R108CrossRefGoogle Scholar
  19. Fauchais P, Rat V, Delbos C, Coudert JF, Chartier T, Bianchi L (2005) Understanding of suspension DC plasma spraying of finely structured coating for SOFC. IEEE Trans Plasm Sci 33:920–930CrossRefGoogle Scholar
  20. Fauchais P, Etchart-Salas R, Delbos C, Tognovi M, Rat V, Coudert JF, Chartier T (2007) Suspension and solution plasma spraying of finely structured coatings. J Phys D Appl Phys 40:2394–2406CrossRefGoogle Scholar
  21. Fauchais P, Etchart-Salas R, Rat V, Coudert J-F, Car N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols or suspensions. J Therm Spray Technol 17(1):31–59CrossRefGoogle Scholar
  22. Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239CrossRefGoogle Scholar
  23. Fauchais P, Vardelle M (2010) Sensors in spray processes. J Therm Spray Technol 19(4):668–694CrossRefGoogle Scholar
  24. Fauchais P, Montavon G, Lima RS, Marple BR (2011a) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D 44:093001CrossRefGoogle Scholar
  25. Fauchais P, Vardelle A (2011b) Innovative and emerging processes in plasma spraying: from micro- to nanostructured coatings. J Phys D Appl Phys 44:194011CrossRefGoogle Scholar
  26. Fauchais P, Vardelle A (2012) Solution and suspension plasma spraying of nanostructure coatings. In: Jazi H (ed) Advanced plasma spray applications. ISBN:978-953-51-0349-3, InTech. http://www.intechopen.com/books/advanced-plasma-spray-applications/ solution-and-suspension-plasmaspraying-of-nanostructure-coatingsGoogle Scholar
  27. Fauchais P, Joulia A, Goutier S, Chazelas C, Vardelle M, Vardelle A, Rossignol S (2013) Suspension and solution plasma spraying. J Phys D Appl Phys 46:224015CrossRefGoogle Scholar
  28. Fauchais P, Heberlein J, Boulos M (2014) Thermal spray fundamentals. Springer, New York, 1566 pages, Chapter 14CrossRefGoogle Scholar
  29. Fauchais P, Vardelle M, Vardelle A, Goutier S (2015a) What do we know, what are the current limitations of suspension plasma spraying? J Therm Spray Technol 24(7):1120–1129CrossRefGoogle Scholar
  30. Fauchais P, Vardelle M, Goutier S, Vardelle A (2015b) Specific measurements of in-flight droplet and particle behavior and coating microstructure in suspension and solution plasma spraying. J Therm Spray Technol 24(8):1498–1505CrossRefGoogle Scholar
  31. Fauchais P, Vardelle M, Goutier S, Vardelle A (2015c) Key challenges and opportunities in suspension and solution plasma spraying. Plasm Chem Plasm Process 35:511–525CrossRefGoogle Scholar
  32. Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying: from splat to coating formation. J Therm Spray Technol 25(8):1534–1553CrossRefGoogle Scholar
  33. Fazilleau J (2003) Contribution to the understanding of the phenomena implied in the achievement of finely structured oxide coatings by suspension plasma spraying. PhD thesis. French, University of Limoges, FranceGoogle Scholar
  34. Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) phenomena involved in suspension plasma spraying, part 1: suspension injection and behavior. Plasm Chem Plasm Process 26(4):371–391CrossRefGoogle Scholar
  35. Filkova I, Cedik P (1984) Nozzle atomization in spray drying. In: Mujumdar AS (ed) Advances drying, vol 3. Hemisphere Pub Corp, pp 181–215Google Scholar
  36. Gell M, Xie LD, Ma XC, Jordan EH, Padture NP (2004) Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf Coat Technol 13(1):97–102CrossRefGoogle Scholar
  37. Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture N, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135CrossRefGoogle Scholar
  38. Guignard A, Mauer G, Vaßen R, Stöver D (2012) Deposition and characteristics of sub-micrometer structured thermal barrier coatings by suspension plasma spraying. J Therm Spray Technol 21(3–4):416–424CrossRefGoogle Scholar
  39. He W, Mauer G, Gindrat M, Wäger R, Vaßen R (2017) Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition. J Therm Spray Technol 26:83–92CrossRefGoogle Scholar
  40. Jadhav AD, Padture NP, Jordan EH, Gell M, Miranzo P, Fullu ER (2006) Low thermal conductivity plasma sprayed thermal barrier coatings with engineered microstructure. Acta Mater 54(12):3343–3349CrossRefGoogle Scholar
  41. Jiang C, Jordan EH, Harris AB, Gell M, Roth J (2015) Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J Therm Spray Technol 24(6):895–906CrossRefGoogle Scholar
  42. Jordan EH, Xie LD, Ma XC, Gell M, Padture NP, Cetegem B, Roth J, Xiao TD, Bryant PEL, Roth J, Xiao TD, Bryant PEC (2004) Superior thermal barrier coatings using solution precursor plasma spray. J Therm Spray Technol 13(1):57–65CrossRefGoogle Scholar
  43. Jordan EH, Gell M, Bonzani P, Chen D, Basu S, Cetegen B, Wu F, Ma X (2007) Making dense coatings with the solution precursor plasma spray process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solution. ASM International, Materials Park, OH, USA, pp 463–470 (e-proceedings)Google Scholar
  44. Jordan EH, Jiang C, Roth J, Gell M (2014) Low thermal conductivity yttria-stabilized zirconia thermal barrier coatings using the solution precursor plasma spray process. J Therm Spray Technol 23(5):849–859CrossRefGoogle Scholar
  45. Jordan EH, Jiang C, Gell M (2015) The solution precursor plasma spray (SPPS) process: a review with energy considerations. J Therm Spray Technol 24(7):1153–1165CrossRefGoogle Scholar
  46. Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Surf Coat Technol 238(2):275–286Google Scholar
  47. Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D (2008) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123CrossRefGoogle Scholar
  48. Keshri AK, Agarwal A (2012) Plasma processing of nanomaterials for functional applications—a review. Nanosci Nanotechnol Lett 4:228–250CrossRefGoogle Scholar
  49. Killinger A, Gadow R, Mauer G, Guignard A, Vaßen R, Stöver D (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20(4):677–695CrossRefGoogle Scholar
  50. Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Materials Sci Eng A 245:143–149CrossRefGoogle Scholar
  51. Koch D, Mauer G, Vaßen R (2017) Manufacturing of composite coatings by atmospheric plasma spraying using different feed-stock materials as YSZ and MoSi2. J Therm Spray Technol 26:708–716CrossRefGoogle Scholar
  52. Li D, Feng J, Zhao H, Liu C, Zhang L, Shao F, Zhao Y, Tao S (2017a) Microstructure formed by suspension plasma spraying: from YSZ splat to coating. Ceram Int (in press) 43(10):7488–7496CrossRefGoogle Scholar
  53. Li X, Ma W, Wen J, Bai Y, Sun L, Chen B, Dong H, Shuang Y (2017b) Preparation of SrZrO3 thermal barrier coating by solution precursor plasma spray. J Therm Spray Technol 26:371–377CrossRefGoogle Scholar
  54. Mahade S, Curry N, Björklund S, Markocsan N, Nylen P, Vaßen R (2017) Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray. J Therm Spray Technol 26:108–115CrossRefGoogle Scholar
  55. Marchand O, Girardot L, Planche MP, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20(6):1310–1320CrossRefGoogle Scholar
  56. Marchand C, Vardelle A, Mariaux G, Lefort P (2008) Modeling of the plasma spray process with liquid feedstock injection. Surf Coat Technol 202:4458–4464CrossRefGoogle Scholar
  57. Marqués J-L, Forster G, Schein J (2009) Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasm Phys J 2:89–98CrossRefGoogle Scholar
  58. Mauer G, Sebold D, Vaßen R, Stöver D (2012) Improving atmospheric plasma spraying of zirconate thermal barrier coatings based on particle diagnostics. J Therm Spray Technol 21(3–4):363–3716CrossRefGoogle Scholar
  59. Mauer G, Jarligo MO, Mack DE, Vaßen R (2013) Plasma-sprayed thermal barrier coatings: new materials, Processing Issues, and Solutions. J Therm Spray Technol 22(5):646–658CrossRefGoogle Scholar
  60. Mauer G, Sebold D, Vaßen R (2014) MCrAlY bond-coats by high-velocity atmospheric plasma spraying. J Therm Spray Technol 23(1–2):140–146CrossRefGoogle Scholar
  61. Mauer G, Schlegel N, Guignard A, Vaßen R, Guillon O (2015) Effects of feedstock decomposition and evaporation on the composition of suspension plasma-sprayed coatings. J Therm Spray Technol 24(7):1187–1194CrossRefGoogle Scholar
  62. Mechnich P, Braue W, Schulz U (2013) High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay. Am Ceram Soc 96(6):1958–1965CrossRefGoogle Scholar
  63. Miller RA (1987) Current status of thermal barrier coatings-an overview. Surf Coat Technol 30:1–11CrossRefGoogle Scholar
  64. Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42CrossRefGoogle Scholar
  65. Moreau C, Gougeon P, Burgess A, Ross D (1995) Characterization of particle flows in an axial injection plasma torch. In: Berndt C, Sampath S (eds) Proceedings 8th NTSC, Houston, Texas (Pub). ASM International, Materials Park, OH, USA, pp 141–147Google Scholar
  66. Munawar AU, Schulz U, Cerri G, Lau H (2014) Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats. Surf Coat Technol 245:92–102CrossRefGoogle Scholar
  67. Munawar AU, Schulz U, Shahid M (2016) Microstructure and lifetime of EB-PVD TBCs with Hf-doped bond coat and Gd-zirconate ceramic top coat on CMSX-4 substrates. Surf Coat Technol 299:104–112CrossRefGoogle Scholar
  68. Muoto CK, Jordan EH, Gell M, Aindow M (2011) Identification of desirable precursor properties for solution precursor plasma spray. J Therm Spray Technol 20(4):802–816CrossRefGoogle Scholar
  69. Mušálek R, Bertolissi G, Medřický J, Kotlan J, Pala Z, Curry N (2015) Feasibility of suspension spraying of yttria-stabilized zirconia withwater-stabilized plasma torch. Surf Coat Technol 268:58–62CrossRefGoogle Scholar
  70. Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Mat Sci Eng A 245:143–149CrossRefGoogle Scholar
  71. von Niessen K, Gindrat M (2014) Plasma sprayed-PVD: a new thermal spray process to deposit out of the vapor phase. J Therm Spray Technol 120(4):736–743Google Scholar
  72. Oberste-Berghaus J, Legoux J-G, Moreau C (2005a) Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics, ITSC 2005. Düsseldorf, Germany, DVS (e-proceedings)Google Scholar
  73. Oberste-Berghaus J, Boccaricha S, Legoux JG, Moreau C, Chraska T (2005b) Suspension plasma spraying of nanoceramics using an axial injection torch, ITSC 2005. Dusselörf, Germany, DVS (e-proceedings)Google Scholar
  74. Oberste-Berghaus J, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15(4):676–681CrossRefGoogle Scholar
  75. Potthoff A, Toma F-L (2014) Suspensions, ready for thermal spraying? In: Meillot E (ed) 6th international workshop on suspension and solution thermal spraying. Tours France, 8, 9 OctGoogle Scholar
  76. Rampon R, Filiatre C, Bertrand G (2008) Suspension plasma spraying of YPSZ coatings: suspension atomization and injection. J Therm Spray Technol 17(1):105–114CrossRefGoogle Scholar
  77. Ravi BG, Sampath S, Gambino R, Devi PS, Parise JB (2006) Plasma spray synthesis from precursors: progress, issues and considerations. J Therm Spray Technol 15(4):701–707CrossRefGoogle Scholar
  78. Schlegel N, Sebold D, Sohn YJ, Mauer G, Vaßen R (2015) Cycling performance of a columnar-structured complex perovskite in a temperature gradient test. J Therm Spray Technol 24(7):1205–1212CrossRefGoogle Scholar
  79. Soysal D, Ansar A (2013) A new approach to understand liquid injection into atmospheric plasma jets. Surf Coat Technol 220:187–190CrossRefGoogle Scholar
  80. Toma F-L, Berger L-M, Stahr CC, Naumann T, Langner S (2010) Microstructures and functional properties of suspension-sprayed Al2O3 and TiO2 coatings: an overview, surface and coatings technology. Surf Coat Technol 202:4318–4328Google Scholar
  81. Toma FL, Bertrand G, Rampon R, Klein D, Coddet C (2006) Relationship between the suspension properties and liquid plasma sprayed coating characteristics, ITSC 2006. ASM International, Materials Park, OH, USA (e-proceedings)Google Scholar
  82. VanEvery K, Krane MJM, Trice RW, Wang H, Porter W, Besser M, Sordelet D, Ilavsky J, Almer J (2011) Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol 20(4):817–828CrossRefGoogle Scholar
  83. Vaßen R, Kaßner H, Mauer G, Stöver D (2010) Suspension plasma spraying: process characteristics and applications. J Therm Spray Technol 19(1–2):219–225CrossRefGoogle Scholar
  84. Vasiliev AL, Padture NP, Ma X (2006a) Coatings of metastable ceramics deposited by solution precursor plasma spray: I-Binary ZrO2-Al2O3 system. Acta Mater 54(19):4913–4920CrossRefGoogle Scholar
  85. Vasiliev AL, Padture NP, Ma XC (2006b) Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system. Acta Mat 54(19):4921–4936CrossRefGoogle Scholar
  86. Vidal-Setif MH, Chellah N, Rio C, Sanchez C, Lavigne O (2012) Calcium–magnesium–alumino–silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high-pressure blade TBCs. Surf Coat Technol 208:39–45CrossRefGoogle Scholar
  87. Wang AH King, Herman H (1998) Nanomaterial deposits formed by dc plasma spraying of liquid feedstocks. J Am Ceram Soc 81(1):121–128Google Scholar
  88. Wang C, Wang Y, Wang L, Hao G, Sun X, Shan F, Zou Z (2014) Nanocomposite lanthanum zirconate thermal barrier coating deposited by suspension plasma spray process. J Therm Spray Technol 23(7):1030–1036CrossRefGoogle Scholar
  89. Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X (2015) Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. J Alloy Compd 649:1182–1190CrossRefGoogle Scholar
  90. Wittmann K, Fazilleau J, Coudert J-F, Fauchais P, Blein F (2002) A new process to deposit thin coatings by injecting nanoparticles suspensions in a d.c. plasma jet. In: Lugscheider E (ed) Proceedings of ITSC 2002, DVS (Pub). Düsseldorf, Germany, pp 519–522Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Fauchais
    • 1
  • M. Vardelle
    • 1
  • A. Vardelle
    • 1
  • S. Goutier
    • 1
  1. 1.SPCTS UMR CNRS 7315European Center of Ceramics, University of LimogesLimogesFrance

Personalised recommendations